Test Smells Catalog
Release 2.0

EASY LAB - Universidade Federal de Alagoas (UFAL)

Aug 02, 2023

TEST SMELL CATEGORIES

1 Contents 3
1.1 Coderelated e e 3
1.1.1 Codeduplication e 3
LI.I.1 - Army Of Clones o o e e e e 3

1.L1.1.2 AssertionChorus e 3

1.1.1.3 Copy-Paste o e e e e 4

1.1.1.4 Cut-And-Paste Code Reuse 4

1.1.1.S Data-JaVu . . o oo o e e e e e 5
1.1.1.6 Duplicate Alt Branches 5

1.1.1.7 Duplicate ASSEIt v v v v v e i e e e e e e e e e e e e e e e 6

1.1.1.8 Duplicate Code e e e e e e e 7
1.1.1.9 Duplicate Component Definition 8
1.1.1.10 Duplicate In-Line Templates 9
1.1.1.11 Duplicate Local Variable/Constant/Timer 9
1.1.1.12 Duplicate Statements o o bt e e e e e e e 11
1.1.1.13 Duplicate Template Fields 11
1.1.1.14 Duplicate TestCode o o i e e e e e e 12
1.1.1.15 Duplicate TestRuns 12
1.1.1.16 Duplicated Actions 13
1.1.1.17 Duplicated Code In Conditional 13
1.1.1.18 Duplicated Code e e e e e 14
1.1.1.19 Half AHelper Method i 15
1.1.1.20 Missing Parameterised Test 16
1.1.1.21 Missing Test DataFactory 16
1.1.1.22 Multiple Tests Testing The Same Or Similar Things 17
1.1.1.23 Reinventing The Wheel 17
1.1.1.24 Second Class Citizens i 17
LIL25 TestClones ittt ittt e e e et e e e e 18
1.1.1.26 Test Code Duplication 18
1.1.1.27 TestRedundancy 20
1.1.1.28 The First And LastRites 20
1.1.1.29 Two For The Price OfOne 21
1.1.1.30 Very Similar Test Cases o v v i v v it e e e e e 22

1.1.2 Complex - Hard tounderstand 22
1.1.2.1 Absence Of Why e 22

1.1.2.2 BadCommentRate 22

1.1.2.3 Boilerplate Hell e 24
1124 Commentsttt e e e e e e 24

1.1.2.5 Complicated LogicIn Tests 25

1.1.2.6 Hard-Coded TestData ittt 25

1.1.277 Hard-Coded Values 26
1.1.2.8 Hard-To-Test Code ittt 26
1.1.2.9 Hard-To-Write Test i e 27
1.1.2.10 Hardcoded Environment Configuration 27
1.1.2.11 Hardcoded Environment L e 28
1.1.2.12 Hardcoded Literals 28
1.1.2.13 Hardcoded TestData. 29
1.1.2.14 HerpDerp o o o i e e e e e e e 29
1.1.2.15 Hidden Complexity 30
1.1.2.16 ItLooksRightToMe 30
1.1.2.17 Keyword Driven Testing o e 31
1.1.2.18 Lack Comments ittt it et 31
1.1.2.19 Large Macro Component v v v v v v v vt i e e e 32
1.1.2.20 Large Module e e e e 32
1.1.2.21 LargeTestFile 32
1.1.2.22 Long Class o v v it e e e e e e 33
1.1.2.23 LongFunction e 33
1.1.2.24 LongMacroEvent e e e e 34
1.1.2.25 LongMethod e 34
1.1.2.26 Long Statement Block o 35
1.1.2.27 Long Test Steps o o v v i i e e e e e e 36
1.1.2.28 Long Test o i i e e e 37
1.1.2.29 Long/Complex/Verbose/Obscure Test v 39
1.1.2.30 Magic Number Test o o i e e e e e 39
1.1.2.31 Magic Values e 40
1.1.2.32 Obscure Test o o o e e e e e e e e 41
1.1.2.33 Optimizing Dry e 43
1.1.2.34 Over Refactoring Of Tests ittt et 43
1.1.2.35 Overcommented Test 44
1.1.2.36 Overly Complex Tests o et 45
1.1.2.37 Overly Dry Tests o it 45
1.1.2.38 Overuse Of Abstractions o it i vt i e et 45
1.1.2.39 Self Important Test Data 46
1.1.2.40 Tests Are Difficult ToWrite 48
1.1.2.41 Using Complicated Data Store 48
1.1.2.42 Using Complicated X-Path Or Css Selectors 49
1.1.2.43 Using Test Case Inheritance To Test Source Code Polymorphism 49
1.1.2.44 Verbose Test e e e 50
1.1.2.45 What Are We Testing? o 0 i e e e e e e e 50

In association with productioncode e 51
1.1.3.1 Behavior Sensitivity 51
1.1.3.2 Changing Implementation To Make Tests Possible 51
1.1.3.3 CodePollution e 52
1.1.34 CodeRunOnly By Tests i 53
1.1.3.5 Context Logic In ProductionCode 53
1.1.3.6 Equality Pollution e 54
1.1.3.7 Fire And Forget 54
1.1.3.8 ForTestersOnly o o e e 55
1.1.3.9 Hooks Everywhere e 56
1.1.3.10 Indecent EXposure i i v i i e e e e e e e e 57
1.1.3.11 Interface Sensitivity o e e 57
1.1.3.12 Mixing Production And TestCode 57
1.1.3.13 Multiple Points Of Failure 58
1.1.3.14 Overly Elaborate Test Code 58

1.1.3.15 Overspecification e e 59
1.1.3.16 Overspecified Software e 59
1.1.3.17 Overspecified Tests o o v i i i e e e e e e e 60
1.1.3.18 Plate Spinning L e e e 61
1.1.3.19 Production LogicInTest 62
1.1.3.20 Test Dependency In Production L. 63
1.1.321 TestHook e 64
1.1.3.22 Test Logic In ProductionCode 64
1.1.3.23 TestTautology o i i i e 65
1.1.3.24 Tests Cluttered With Business Logic 65
1.1.3.25 Tests Require Too Much Intimate Knowledge Of The Code ToRun 65
1.1.3.26 The Telltale Heart i 66
1.1.3.27 The Ugly Mirror o i e e e e e e e e e e e e e 66
1.1.3.28 Trying To Test The Untestable 67
1.1.3.29 Ui Tests Should Not Expose Interactions With Web Elements 67
1.1.3.30 Well, My SetupWorks 68

Mockandstubrelated 68
1.1.4.1 Excessive Mocking i e e e 68
1.1.42 Is Mockito Working Fine? 69
1.1.43 Making A Mockery Of Design 69
1.1.44 Mismatched Stubs L 70
1.1.45 Mock Everything e 70
1.1.46 Mock Happy o o e e e e e 70
1.147 MockMadnesso v i i e e 71
1.14.8 Mock’EmAIl 71
1.1.49 Mockers Without Borders o 72
1.1.4.10 Mocking A Mocking Framework 74
1.1.4.11 Mocking What You Don’TOwn 74
1.1.4.12 Mockito Any() Vs. Isa() o o i i e e e 74
1.1.4.13 Overmocking i i e e e e e e e 75
1.1.4.14 Overuse Mocking 75
1.1.4.15 Remote Control Mocking 76
1.1.4.16 Subclass ToTest 76
L1417 Surrealo e 77
1.1.4.18 Testing The Framework it 78
1.1419 TheDead Tree ittt e et 79
1.1.420 The Mockery e 79
1.1.4.21 Unnecessary Stubs e e 80

Violating coding best practices o e e e e e 80
1.1.5.1 Accidental Test Framework 80
1.1.5.2 Ambiguous Tests L 81
1.1.53 Anonymous TestCase 81
1.1.54 Anonymous Test e 81
1.1.5.5 Bad Documentation Comment 82
1.1.5.,6 - Bad Naming e e e e e e e 83
1.1.5.7 Badly Structured Test Suite e 84
1.1.5.8 Blethery Prefixes 84
1.1.5.9 Comments Only Test e e 85
1.1.5.10 Constant Actual Parameter Value 85
1.1.5.11 Dead Field e 86
1.1.5.12 Default Test e 86
1.1.5.13 Directly Executing Javascript 88
1.1.5.14 Disabled Test o o e e e e 88
1.1.5.15 Empty Method Categoryo i it 89

1.1.5.16
1.1.5.17
1.1.5.18
1.1.5.19
1.1.5.20
1.1.5.21
1.1.5.22
1.1.5.23
1.1.5.24
1.1.5.25
1.1.5.26
1.1.5.27
1.1.5.28
1.1.5.29
1.1.5.30
1.1.5.31
1.1.5.32
1.1.5.33
1.1.5.34
1.1.5.35
1.1.5.36
1.1.5.37
1.1.5.38
1.1.5.39
1.1.5.40
1.1.5.41
1.1.5.42
1.1.5.43
1.1.5.44
1.1.5.45
1.1.5.46
1.1.5.47
1.1.5.48
1.1.5.49
1.1.5.50
1.1.5.51
1.1.5.52
1.1.5.53
1.1.5.54
1.1.5.55
1.1.5.56
1.1.5.57
1.1.5.58
1.1.5.59
1.1.5.60
1.1.5.61
1.1.5.62
1.1.5.63
1.1.5.64
1.1.5.65
1.1.5.66
1.1.5.67
1.1.5.68
1.1.5.69

Empty Test-Method Category o v v i i e i e e e e 89
Empty Test o o e e e e e e e e 89
ErraticTest. o . . e 91
ErraticTests L e 91
Everything Is A Property 92
Flaky Locator e 93
Flaky Test o o o e e e e e e e e 93
Fully-Parameterized Template 94
Goto Statement L. e e e 94
Having Flaky Or Slow Tests 95
Hidden Meaning e 96
HiddenTestCall 96
Ignored Test o i o e e e e e e 97
Improper Test Method Location 98
Inconsistent Hierarchy Lo oL 99
Integration Test, Masquerading As Unit Test 99
Intermittent Test Failureso 99
Is There Anybody There? i it e . 100
Lack Of Encapsulation e 100
Lack Of MacroEvents 101
Literal Pollution e 101
Long Parameter List 102
LostTest e 102
Meaningless Variable Names 103
Messy Test . . . o v o v e e e e e e e e e e 103
Missed Skip Rotten Green Test 103
Missing Variable Definition L oo 104
Missing Verdict e e e e e 105
Mistaken Identity oL e e 105
Mixed Selectors 106
Name-Clashing Import 106
Non-Functional Statement L e 107
Nondeterministic Test e 107
Opaque OUPUL o o ot e e e e e e e e e e 108
Over-Eager Helper e 108
Over-SpecificRunsOn o 109
Overreferencing o o L e 109
Proper Organization 110
Sensitive Locators L 111
Short Template o e e e e 111
Singular Component Variable/Constant/Timer Reference 112
Singular Template Reference 113
StopInFunction L 114
Test Body Is Somewhere Else 114
Test-Class Name o 0 i 115
Test-Method Category Name 115
Testing For A SpecificBug 0oL, 116
Testy Testy Test Test o o o o o i i e e e 116
The Conjoined Twins o it 117
The Enumerator e 117
The Flickering Test 0 i e e e e e 118
The Forty Foot Pole Test 118
The Sleeper e 119
The Stepford Fields 119

1.1.570 The Test WithNoName 120
1.1.5.71 TimeBombData 120
1.1.5.72 TimeBombs e 121
1.1.5.73 Time Sensitive Test o e e e 122
1.1.5.74 Treating Test Code As A Second Class Citizen 123
1.1.5.75 Unclassified Method Category 123
1.1.5.76 Unreachable Default 124
1.1.5.77 Unrestricted Imports 0 o e e e e e 124
1.1.5.78 Unsuitable Naming 125
1.1.5.79 Unused Imports 126
1.1.5.80 Unused Inputs i i i e e e 127
1.1.5.81 Unused Parameter e 127
1.1.5.82 Unused Shared-Fixture Variables 128
1.1.5.83 Unused Variable Definition 128
1.1.5.84 Unworldly TestData 129
1.1.5.85 UsingFaker 129
1.1.5.86 Verbless And Noun-Full 129
1.1.5.87 Wasted Variable Definition, . 130
1.2 Dependencies v i i i e e e e e e e e e e e e e e e 130
1.2.1 Dependencies among testsol e e e e 130
1.2.1.1 ChainGang e 130
1.2.1.2 Constrained Test Order i 131
1.2.1.3 Coupled Tests v v v e e e e e e e e e e e e 132
1.2.1.4 Coupling Between Test Methods 132
1.2.1.5 Dependent Test e 133
1.2.1.6 Identity Dodgems 134
1.2.1.7 Imteracting Test Suites e 134
1.2.1.8 Interacting TestS o o v i i e e e e e e e e e e e 135
1.2.1.9 Lack Of Cohesion Of Test Caseso v v v 135
1.2.1.10 Lack Of Cohesion Of Test Methods 135
1.2.1.11 Litter Bugs e 136
1.2.1.12 Lonely Test o o o e 137
1.2.1.13 Order Dependent Tests o v v i i v it et e e e e 138
1.2.1.14 TestPollution e 138
1.2.1.15 TestRunWar e 139
1.2.1.16 The Environmental Vandal, 140
1.2.1.17 The Inhuman Centipede 140
1.2.1.18 TheLeaky Cauldron ittt 141
1.2.1.19 TheParasite e 141
1.2.1.20 The Peeping Tom i i i e e e e 141
1.2.1.21 Unusual TestOrder i 142
1.2.2 External dependencies L e e e e 142
1.2.2.1 Context Sensitivity e e 142
1.22.2 Counting On Spies v v v i it e e e e e e e e e e 143
1.2.2.3 DataSensitivity e e e e e e e e e e e 143
1224 External Data e 144
1.2.2.5 External Dependencies e 144
1.2.2.6 Factories Depending On Database Records 145
1.2.2.7 HiddenDependency e 145
1.2.2.8 Hidden Integration Test i i e e e 146
1.2.2.9 Local Only Testing i i i e et e e e e e 146
1.22.10 MiddleMan 147
1.22.11 Mystery GUESE o o i e e e e e e e e e e e e 147
1.2.2.12 Programming Paradigms Blend L L. 149

1.2.2.13 Remote Mystery GUESt v v i i i e e e e e e e e e e 149
1.2.2.14 Require External Resources e 150
1.2.2.15 Resource Leakage 151
1.2.2.16 Resource Optimism 151
1.2.2.17 Stinky Synchronization Syndrome oL 153
1.2.2.18 Stinky Synchronization L 153
1.2.2.19 Tests Depend On Something Outside Of The Test Suite 154
1.2220 TheLocal Hero i 154
1.2.2.21 The Operating System Evangelist 155
1.2.2.22 Web-Browsing Test o 155
1.3 Designrelated L e e 156
1.3.1 Notusingtest patteIns v v v v v v v v e e e e e e e e e e e e e e e e e e 156
1.3.1.1 Autogeneration i i e e e e e e e e e e e e e e e e e 156
1.3.1.2 Constructor Initialization 157
1.3.1.3 Contortionist Testing 158
1.3.1.4 Disorder e e e 158
1.3.1.5 TI’Ll Believe It When I See Some Flashing Guis 159
1.3.1.6 - Missing Log o e e e e e e e 160
1.3.1.7 NarcissistiC o o o e e 161
1.3.1.8 No Clear Structure Within The Test, 161
1.3.1.9 No Structure When Creating Test Cases 161
1.3.1.10 Not Using Page-Objects i ittt 162
1.3.1.11 So The Automation Tool Wrote ThisCrap 162
1.3.1.12 Test::Class Hierarchy ittt 163
1.3.1.13 Testing Business Rules Through Ui 163
1.3.1.14 The Turing Test 163
1.3.1.15 Unclassified Method Category 164
1.3.1.16 Undefined Test i i e e e 164
1.3.1.17 Unknown Test i i e e 165
1.4 Issuesintest StePS ¢ o v v it e e e e e e e e e e e 166
1.4.1 Issuesin assertions o o v it i e e e e e e e e e e e e e e e 166
1.4.1.1 7Layer Testing o i i e 166
1.4.1.2 Asserting Pre-Condition And Invariants 168
1.4.1.3 Assertion Diversion Lo e 169
1.4.1.4 Assertion Mismatch Scenario 169
1.4.1.5 Assertion-Free e 170
1.4.1.6 Assertionless Test e 170
1.4.1.7 Assertions Should Be Merciless 171
1.4.1.8 Blinkered Assertions e e 171
1.4.1.9 Brittle Assertion e 172
1.4.1.10 BrittleTest oL L e 172
1.4.1.11 Brittle UiTests o o o o i e e e e e e e e e 174
1.4.1.12 Broad Assertiono e e e e e 174
1.4.1.13 Bumbling ASSErtions v v i v e e e e e e e e e e e 175
1.4.1.14 Calculating Expected Results On The Fly 175
1.4.1.15 CeleryData e 176
1.4.1.16 Circumstantial Evidence 177
1.4.1.17 Commented Code In The Test, 177
1.4.1.18 Commented Test e 177
1.4.1.19 Complex ASSErtions v v v v v v i i e e e e e e e e e 178
1.4.1.20 Conspiracy Of Silence o e e e 180
1.4.1.21 Early Returning Test 180
1.4.1.22 Equality Sledgehammer Assertion 180
1.4.1.23 Fantasy TestS o o o v v e e e e e e e 181

vi

1.4.2

1.4.3

1.4.1.24 Fragile Test o o o e e 182
1.4.1.25 Fuzzy ASSETtions i v v it e e e e e e e e e e e e e 183
1.4.1.26 Happenstance Testing o . . o i e e e 184
1.4.1.27 Inadequate ASsertiont 184
1.4.1.28 Inappropriate Assertions e 185
1.4.1.29 Incidental Coverage o i i i i it e e 185
1.4.1.30 Invisible Assertions 186
1.4.1.31 Likely Ineffective Object-Comparison 187
1.4.1.32 LineHitter e 187
1.4.1.33 Martini ASSertionol e e e e e e 188
1.4.1.34 Missed Fail Rotten Green Test 188
1.4.1.35 Missing ASSertions L e e e 189
1.4.1.36 Missing Test o ot e e e e e e e e e e e 189
1.4.1.37 No ASSertions it it e e e 190
14138 NoTracesLeft e 190
14139 OnTheFly. e 191
1.4.1.40 Over Exertion Assertion i 191
1.4.1.41 Over-Checking 0 e e e e e e e e e 192
1.4.1.42 Premature Assertions oo e 192
1.4.1.43 Primitive Assertion L. e 194
1.4.1.44 Redundant Assertion L e e e 195
1.4.1.45 Returning Assertion Lo 196
1.4.1.46 Second Guess The Calculation 196
L4147 Self-Test o o0 0 e 197
1.4.1.48 Sensitive Equality 198
1.4.1.49 Shotgun Surgery 200
1.4.1.50 Testing The Internal Monologue 200
1.4.1.51 TheButterfly e e e 201
1.4.1.52 The Nitpicker e e e e e e 201
1.4.1.53 Under-The-Carpet Assertion, 202
1.4.1.54 Under-The-Carpet Failing Assertion 202
1.4.1.55 Using Assertions As A Substitute For All Class-Based Exceptions 203
1.4.1.56 Using Assertions As A Substitute For All Defensive Programming Techniques . . . 203
1.4.1.57 Using The Wrong ASSert o v v i v v i i e e e e et e e e e 203

Issuesin exception handling L e 204
1.4.2.1 Catching Unexpected Exceptions 204
1.4.2.2 Exception Catch/Throw 205
1.4.2.3 Exception Catching Throwing 205
1424 ExceptionHandling e 205
1.4.2.5 Expected Exceptions And Verification 207
1.4.2.6 Expecting Exceptions Anywhere, . 208
1.4.2.77 TIssues In Exception Handling 209
1.4.2.8 NoError HandlingInTests 209
1.42.9 TheGreedy Catcher it 210
1.42.10 TheSecretCatcher. e 210
1.42.11 TheSilentCatcher 211

Issuesinsetup e e 211
1.43.1 Badly Used Fixture i 211
1432 BuryTheLede. e 213
1.4.3.3 Complicated Set Up Scenarios Within The Tests Themselves 215
1.43.4 Curdled Test Fixtures oo i 215
1.43.5 Empty Shared-Fixture 216
1.43.6 Excessivelnline Setup oo 216
1.4.3.7 Excessive SEtup e e e e 217

vii

1.4.3.8 Factories That Contain UnnecessaryData. 219
1.43.9 Fragile Fixture e e e e 219
1.4.3.10 Fragile Locators e 220
1.43.11 General Fixture e e e e 220
1.43.12 Hidden TestData i e 222
14313 IdlePtc. e 223
1.4.3.14 TInappropriately Shared Fixture, 223
1.4.3.15 TIrrelevant Information L 224
1.43.16 IsolatedPtc e 225
1.43.17 Large Fixture 225
1.4.3.18 Max Instance Variables 226
1.4.3.19 Noisy Logging 0 e e e e e 226
1.43.20 Noisy Setup o o v i e e e e e e e 226
1.43.21 ObscureIn-Line Setup 227
1.43.22 OversharingOn Setup 228
1.4.3.23 Refused Bequest 228
1.4.3.24 Scattered Test Fixtures e 229
1.43.25 Separate Fixture Files e 229
1.43.26 ShareTheWorld 230
1.4.3.27 Superfluous SetupData oo 230
1.4.3.28 Taking Environment State For Granted 231
1.4.3.29 TestMaverick e e 231
1.4.3.30 Test Objects Initialized In A Describe Block 232
1.43.31 Test Objects Initialized In Each Test 232
1.4.3.32 Test Setup Is Somewhere Else 233
14333 The Cuckoo i e e e e e 233
14334 TheMotherHen 234
1.4.3.35 There Is Too Much Setup To Run The TestCases 234
1.4.3.36 Unused Definition 235
1.43.37 UsingFixtures e 235
1.43.38 VagueHeaderSetup 236
1.4.3.39 Verifying In Setup Method Lo 236
1.4.3.40 Where Does This One Go? 237
144 Issuesinteardown e e e e 237
1.44.1 Activation ASYMmMEetry o v v v v v et e e e e e e e e e e e e e 237
1.44.2 Complex Teardown e 239
1.44.3 External Shared-State Corruption 240
1.44.4 Generous Leftovers L e 240
1.4.4.5 TImproper Clean Up After Tests Have BeenRun 241
1.44.6 It Was Like That WhenIGotHere 241
1.44.7 Leaving Temporary Files Behind 242
1448 Notldempotent e e e e 242
1.4.4.9 Shared-State COrruption 243
1.44.10 Sloppy Worker e e e e e e e e 243
1.44.11 Teardown Only Test i i i i et e e e e e e e e e 244
1.4.4.12 The Painful Clean-Up e e e e e e 244
1.44.13 TheSoloist e 245
1.4.4.14 Unrepeatable Test e 245
1.4.4.15 WetFloor e 246
1.5 Testexecution-behavior L 246
1.5.1 Other testexecution - behavior L o 246
1.5.1.1 Abnormal Utf-Use 246
1.5.1.2 Chatty Logging e e e e e e 247
1.5.1.3 Frequent Debugging 248

viii

1.5.1.4 Interactive Test. o o e 248
1.5.1.5 Manual ASSertions e e e e e 249
1.5.1.6 Manual Event Injection 249
1.5.1.7 Manual Fixture Setup e 249
1.5.1.8 Manual Intervention e 250
1.5.1.9 Manual Result Verification 250
1.5.1.10 Print Statement e e e 251
1.5.1.11 RedundantPrint 251
1.5.1.12 Requires Supervision 252
1.5.1.13 The Loudmouth e 253
1.5.1.14 Transcripting Test o o e e e 253
1.5.1.15 Trying To Use Ui Automation To Replace Manual Testing 254
1.5.1.16 Unnecessary Navigation o 0 i it v i ettt 254
1.5.2 Performance e 256
1.52.1 Asynchronous Test. 256
1.5.2.2 Factories Pulling Too Many Dependencies 257
1.52.3 Hardcoded Sleep. e e e e 257
1.5.24 Inefficient Waits e 258
1.5.2.5 Long Running Tests o o v i ittt e e 258
1.5.2.6 Sleeping For Arbitrary Amount Of Time 258
15277 Sleepy Test o L e 259
1.5.2.8 Slow Component Usage o v v v vttt e 260
1.5.2.9 Slow Running Tests o 0 i e e e e 261
15210 Slow Test. . . o o v e e e e e e e e e e 261
1.5.2.11 The Bandwidth Demander 262
1.52.12 TheSlowPoke 262
1.5.2.13 The Temporal TipToe o o ittt e e et 263
1.52.14 TooMany Tests o v v i i e e e e e e e e e e e e 263
1.5.22.15 Wait AndSee e 264
1.6 Testsemantic-1ogic e e 264
1.6.1 Othertestlogicrelated e 264
1.6.1.1 AnalProbe 264
1.6.1.2 Assert 1 =2 e e 265
1.6.1.3 AsynchronousCode i e e e 265
1.6.1.4 Branch To Assumption Anti-Pattern 266
1.6.1.5 Chafing e 266
1.6.1.6 Complex Conditional 267
1.6.1.7 Conditional Assertions e 268
1.6.1.8 Conditional Logic Test i e e e e 269
1.6.1.9 Conditional Logic e e 269
1.6.1.10 Conditional Test Logic 269
1.6.1.11 Conditional Tests o o e e 272
1.6.1.12 Conditional Verification Logic 272
1.6.1.13 Conditionals In Tests e 273
1.6.1.14 Contaminated Test Subject e 273
1.6.1.15 Context-Dependent Rotten Green Assertion Test 275
1.6.1.16 Control Logic e 276
1.6.1.17 Easy Tests o o o it e e e e e e e e e e 276
1.6.1.18 Embedding Implementation Detail In Your Features/Scenarios 276
1.6.1.19 Evolve Or e 277
1.6.1.20 Factories With Random Data Instead Of Sequences 278
1.6.1.21 Flexible Test e 278
1.6.1.22 Fully Rotten Green Test 279
1.6.1.23 Generative e e e e 280

1.6.2

1.6.1.24 Get Really Clever And Use Random Numbers In Your Tests 281
1.6.1.25 Ground Zerot e e e e e e e e 281
1.6.1.26 Guarded Test e e 282
1.6.1.27 HappyPath. 283
1.6.1.28 TIWroteItLike This 283
1.6.1.29 Incidental Details 284
1.6.1.30 Inconsistent Wording e e 284
1.6.1.31 Indecisive e 285
1.6.1.32 Indented Test. e 286
1.6.1.33 Insufficient Grouping 286
1.6.1.34 InvalidTestData e 287
1.6.1.35 Invasion Of Privacy e e e 288
1.6.1.36 Lazy Test. o o i e e 289
1.6.1.37 London School Orthodoxy 291
1.6.1.38 Multiple Test Conditions, 292
1.6.1.39 Nested Conditional e 292
1.6.1.40 Neverfail Test e 293
1.6.1.41 Only Easy Tests o v v i i e e e e e e e e e e e e e e 293
1.6.1.42 OnlyHappy Path Tests 294
1.6.1.43 Paranoid L e e e e e e e 294
1.6.1.44 Parsed Data e e e 296
1.6.1.45 QUIiXOtC o o e e e e e e e e e 296
1.6.1.46 Rewriting Private Methods AsPublic 298
1.6.1.47 Rotten Green Test e 298
1.6.1.48 SkipRotten Green Test 299
1.6.1.49 Skip-Epidemic 299
1.6.1.50 Sneaky Checking e 300
1.6.1.51 Success Against AllOdds e e 300
1.6.1.52 Tangential e e e e e 301
1.6.1.53 TestBy Number 303
1.6.1.54 Test-Per-Method 305
1.6.1.55 Testing Internal Implementation 305
1.6.1.56 Testing The Authentication Framework 305
1.6.1.57 Tests That Can’T Fail 306
1.6.1.58 The Dodger i i e e e e e 306
1.6.1.59 Thelnspector e 307
1.6.1.60 TheLiar e 307
1.6.1.61 The Sequencer v i ittt e e e 308
1.6.1.62 Underspecification o . e e e e e 308
1.6.1.63 Untestable Test Code ittt 309
1.6.1.64 Use Smart Values 309
1.6.1.65 Wheel Of Fortune e 310
1.6.1.66 X-Ray Specs o o o e e 311
1.6.1.67 You Do Weird Things To Get At The Code Under Test 312

Testing many things L e e e e e 313
1.6.2.1 Assert The World 313
1.6.2.2 AssertionRoulette 313
1.6.23 EagerTest o e e 316
1.6.2.4 Field-Level Assertion i e 319
1.6.2.5 Many ASSErtions v v v i e e e e e e e e e e e e e e e e e 319
1.6.2.6 Method-Based Testing i i i i e e 319
1.6.2.7 Missing Assertion Message oo 320
1.6.2.8 Multiple Assertions e 320
1.6.2.9 Piggybacking On Existing Tests 321

1.7
1.8

1.6.2.10 SplitLogic o e e e e e e e 321

1.6.2.11 Split Personality e e e 322
1.6.2.12 Test Cases Are Concerned With More Than One Unit Of Code 323
1.6.2.13 TheFreeRide e 323
1.6.2.14 The Giant e e e e e 324
1.6.2.15 TheOne i e e e 326
1.6.2.16 The Test It All e 327
1.6.3 Testingmany UnitS o o i e e e e e e e e e e e e e e 327
1.6.3.1 Feature Envy 327
1.6.3.2 Indirect Testing L 327
1.633 TestEnvy e 329
1.6.3.4 The Stranger o v v v v e e e e e e e e e e e e e e e e e 329
EasyLab o o e e e e e e 330
How tocontribute e e 330
1.8.1 1. Contributing withanewsmell L 0oL, 330
1.8.2 2.Bugreporting e e e 330
1.8.3 3. I want to modify an already cataloged smell 330

Xi

xii

Test Smells Catalog, Release 2.0

Welcome!

Search for a test smell using the search or the sidebar — works with test smells descriptions too — if you already
know what to look for. If not, you may browse by category in the left panel. Download options (PDF and EPUB) are
available in the Read the Docs menu (bottom of left panel). There is a lot to see!

The catalog provides a visualization of the data set compiled in a Multivocal Literature Review published here. Initially,
the catalog unifies information from 127 formal and informal sources. As the catalog is open-source, any community
member can submit a contribution as a pull request and help improve it.

Every listed test smell contains a name, AKA (when available), definition, code example (likely extracted from the
listed references), and the listed references, which of course provide further information. We expect the catalog to be
a helpful resource for software testing community members to better understand test smells. Furthermore, it may help
avoid proposing new names (AKA) to existing test smells in an overlap.

Tip: Please help us keep this Catalog updated and contribute with your own test smell findings.

Send in your helpful comments or ideas to easy @ic.ufal.br or contribute directly by clicking Edit on GitHub in the top
right corner of this page.

If you are not familiar with directly editing, give us a new issue! Click here and create a new GitHub issue

TEST SMELL CATEGORIES 1

mailto:easy@ic.ufal.br
https://github.com/easy-software-ufal/catalog-test-smells/issues/new?assignees=mantertius%2C+eas5&labels=enhancement&template=add-new-test-smell.md&title=%5BNEW%5D+Add+a+new+smell

Test Smells Catalog, Release 2.0

2 TEST SMELL CATEGORIES

CHAPTER
ONE

CONTENTS

1.1 Code related

1.1.1 Code duplication

1.1.1.1 Army Of Clones

Definition:
* Different tests perform and implement similar actions, leading to duplicated pieces of test code

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* On the Maintenance of System User Interactive Tests

* Smells in System User Interactive Tests

1.1.1.2 Assertion Chorus

Definition:

» where a series of assertions repetitively perform a long winded routine to test something.
Also Known As:

* Missing custom assertion method

References:

Quality attributes
e - Code Example

¢ - Cause and Effect

https://orbilu.uni.lu/handle/10993/48254
https://arxiv.org/abs/2111.02317

Test Smells Catalog, Release 2.0

* - Frequency

* - Refactoring

 Test Smells - The Coding Craftsman

1.1.1.3 Copy-Paste

Definition:

* Not only for test development, copy-paste bugs are also very common in product code. Just do a copy-paste
without enough modification carelessly

Code Example:
* No code examples yet...

References:

Quality attributes
* - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* Test Development Patterns and Anti-Patterns - Medium

1.1.1.4 Cut-And-Paste Code Reuse

Definition:

¢ Cut and Paste is a powerful tool for writing code fast but it results in many copies of the same code each of which
must be maintained in parallel.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

» xUnit test patterns: Refactoring test code

4 Chapter 1. Contents

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://medium.com/test-go-where/test-development-patterns-and-anti-patterns-78820e1802df
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

1.1.1.5 Data-Ja Vu

Definition:
* where some data that could be made immutable and loaded once is read for every instance of a test

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Test Smells - The Coding Craftsman

1.1.1.6 Duplicate Alt Branches

Definition:
« Different alt constructs contain duplicate branches

Code Example:

testcase tc_example_TestCasel() runs on ExampleComponent {
timer t_guard ;
/) ...
t_guard.start(10.0) ;
alt{
[] pt.receive(a_MessageOne) {
pt.send(a_MessageTwo) ;
}
[1 any port.receive {
set.verdict(fail);
stop;
}
[1 t_guard.timeoutq{
set.verdict(fail);
stop;
}

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

- Refactoring

1.1. Code related 5

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.1.7 Duplicate Assert

Definition:

* This smell occurs when a test method tests for the same condition multiple times within the same test method.
If the test method needs to test the same condition using different values, a new test method should be created.
As a best practice, the name of the test method should be an indication of the test being performed. Possible
situations that would give rise to this smell include (1) developers grouping multiple conditions to test a single
method, (2) developers performing debugging activities, and (3) an accidental copy-paste of code

Code Example:

@Test

public void testXmlSanitizer() {
boolean valid = XmlSanitizer.isValid("Fritzbox");
assertEquals("Fritzbox is valid", true, valid);
System.out.println("Pure ASCII test - passed");

valid = XmlSanitizer.isValid("Fritz Box");
assertEquals("Spaces are valid", true, valid);
System.out.println("Spaces test - passed");

valid = XmlSanitizer.isValid("Frutzbux");
assertEquals("Fritzbix is invalid", false, valid);
System.out.println("No ASCII test - passed");

valid = XmlSanitizer.isValid("Fritz!box");
assertEquals("Exclamation mark is valid", true, valid);
System.out.println("Exclamation mark test - passed");

valid = XmlSanitizer.isValid("Fritz.box");
assertEquals("Exclamation mark is valid", true, valid);
System.out.println("Dot test - passed");

valid = XmlSanitizer.isValid("Fritz-box");
assertEquals("Minus is valid", true, valid);
System.out.println("Minus test - passed");

valid = XmlSanitizer.isValid("Fritz-box");
assertEquals("Minus is valid", true, valid);
System.out.println("Minus test - passed");

References:

Quality attributes
¢ - Code Example

e - Cause and Effect

6 Chapter 1. Contents

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

* - Frequency

* - Refactoring

* An Exploratory Study on the Refactoring of Unit Test Files in Android Applications

* Analyzing Test Smells Refactoring from a Developers Perspective

* Automatic Identification of High-Impact Bug Report by Product and Test Code Quality
* Automatic generation of smell-free unit tests

* Characterizing High-Quality Test Methods: A First Empirical Study

* Characterizing High-Quality Test Methods: A First Empirical Study

* Handling Test Smells in Python: Results from a Mixed-Method Study

* Investigating Test Smells in JavaScript Test Code

* On the Distribution of “Simple Stupid Bugs” in Unit Test Files: An Exploratory Study

* On the diffusion of test smells and their relationship with test code quality of Java projects
* On the distribution of test smells in open source Android applications: an exploratory study
* On the influence of Test Smells on Test Coverage

* On the test smells detection: an empirical study on the jnose test accuracy

* On the use of test smells for prediction of flaky tests

* PyNose: A Test Smell Detector For Python

* Pytest-Smell: a smell detection tool for Python unit tests

* RAIDE: a tool for Assertion Roulette and Duplicate Assert identification and refactoring
* Refactoring Test Smells With JUnit 5: Why Should Developers Keep Up-to-Date?

* Software Unit Test Smells

 Test Smell Detection Tools: A Systematic Mapping Study

* The secret life of test smells-an empirical study on test smell evolution and maintenance
* Understanding practitioners’ strategies to handle test smells: a multi-method study

e What the Smell? An Empirical Investigation on the Distribution and Severity of Test Smells in Open Source
Android Applications

* tsDetect: an open source test smells detection tool

1.1.1.8 Duplicate Code

Definition:

* For test automation, it’s especially easy to find yourself with the same code over and over. Steps such as logging
in and navigating through common areas of the application are naturally a part of most scenarios. However,
repeating this same logic multiple times in various places is a code smell. Should there be a change in the
application within this flow, you’ll have to hunt down all the places where this logic is duplicated within your
test code and update each one. This takes too much development time and also poses the risk of you missing a
spot, therefore introducing a bug in your test code.

1.1. Code related 7

https://dl.acm.org/doi/10.1145/3387940.3392189
https://dl.acm.org/doi/10.1145/3571473.3571487
https://huang.zj.cn/pdf/J13.pdf
https://repositorio.ul.pt/handle/10451/56819
https://ieeexplore.ieee.org/document/9796158/
https://ieeexplore.ieee.org/document/9796158/
https://dl.acm.org/doi/10.1145/3474624.3477066
https://dl.acm.org/doi/10.1145/3482909.3482915
https://ieeexplore.ieee.org/document/9463091
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://dl.acm.org/doi/10.5555/3370272.3370293
https://dl.acm.org/doi/10.1145/3350768.3350775
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://dl.acm.org/doi/abs/10.1145/3482909.3482916
https://ieeexplore.ieee.org/document/9678615/
https://dl.acm.org/doi/10.1145/3533767.3543290
https://dl.acm.org/doi/10.1145/3422392.3422510
https://ieeexplore.ieee.org/document/9769994/
https://testsmells.org/
https://dl.acm.org/doi/10.1145/3463274.3463335
https://link.springer.com/article/10.1007/s10664-021-09969-1
https://dl.acm.org/doi/10.1145/3474624.3474639
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://dl.acm.org/doi/10.1145/3368089.3417921

Test Smells Catalog, Release 2.0

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Writing good gherkin

1.1.1.9 Duplicate Component Definition

Definition:

* Two or more components declare identical variables, constants, timers or ports.

Code Example:

type component cl {

}

var integer i ;

const integer id := 1;
timer t;

port ExamplePort pl;

type component c2 {

const integer id := 2;
timer t;
port ExamplePort p2;

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

An approach to quality engineering of TTCN-3 test specifications
Pattern-based Smell Detection in TTCN-3 Test Suites

Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

Chapter 1. Contents

https://techbeacon.com/app-dev-testing/7-ways-tidy-your-test-code
https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

1.1.1.10 Duplicate In-Line Templates

Definition:
* Two or more similar or identical in-line templates.

Code Example:

module DuplicateInlineTemplates (
type record ExampleRecordType (
boolean exampleFieldl,
integer exampleField2,
charstring exampleField3
}
type port ExamplePort message (
out ExampleRecordType;

}
type component ExampleComponent (
port ExamplePort pt;

}

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites
 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.1.11 Duplicate Local Variable/Constant/Timer

Definition:

* The same local variable, constant or timer is defined in two or more functions, test cases or altsteps running on

the same component.

Code Example:

type component c {
port ExamplePort p;
}
testcase tcl() runs on c {
timer t;
p.send("fool");
t.start (10.0);
alt {

(continues on next page)

1.1. Code related

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

[1] p.receive("bari") {
// do something
}
[] any port.receive{
// error handling
3
[1 t.timeout {
// error handling
}
}
}

testcase tc2() runs on c {
timer t;
p.send("foo2");
t.start (20.0);
alt {
[p.receive("bar2") {
// do something
}
[1 any port.receive {
// error handling
}
[] t.timeout {
// error handling

}
}

(continued from previous page)

References:

Quality attributes
* - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites
* Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

10

Chapter 1. Contents

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

1.1.1.12 Duplicate Statements

Definition:

* A duplicate sequence of statements in the statement block of one or multiple behavioral entities (functions, test

cases and altsteps).

Code Example:

function f_sendMessages(in float p_duration) runs on ExampleComponent {
timer t;
t.start(p_duration);
t.timeout;
pt.send("first timeout");
t.start(p_duration);
t.timeout;
pt.send("second timeout ");

References:

Quality attributes
* - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

* Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.1.13 Duplicate Template Fields

Definition:

 The fields of two or more templates are identical or very similar

Code Example:

template MyRecordType tl := {
fieldl := "foo",

field2 := 1,

field3 := true

}

template MyRecordType t2 := {

fieldl := "foo",
field2 := 1,
field3 := true
}

(continues on next page)

1.1. Code related

11

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

template MyRecordType t3 := {

(continued from previous page)

fieldl := "bar",
field2 := 1,
field3 := true
}

References:
Quality attributes

* - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.1.14 Duplicate Test Code

Definition:
* Another test method tests the same thing.

References:

Quality attributes
* - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

¢ What We Know About Smells in Software Test Code

1.1.1.15 Duplicate Test Runs

Definition:

e When the inherited test methods are executed twice: once in the parent test case (i.e., a non-abstract class) and

once in the child test case.
Code Example:

* No code examples yet...

12

Chapter 1. Contents

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16
https://ieeexplore.ieee.org/document/8501942

Test Smells Catalog, Release 2.0

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

* - Refactoring

* Revisiting Test Impact Analysis in Continuous Testing From the Perspective of Code Dependencies

1.1.1.16 Duplicated Actions

Definition:
* Some duplicated actions appear in multiple places.

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Bad smells and refactoring methods for GUI test script

1.1.1.17 Duplicated Code In Conditional

Definition:

* The duplicated code can appear in a series of conditionals (with different conditions and the same action in each
check) or in all legs of a conditional

Code Example:

function checkSomething(in float pl, in float p2) return boolean {
if (p1 < 0.0) {
return false;
}
if (p2 >= 7.0) {
return false;
}
if (p2 < p1) {
return false;
}

return true;

(continues on next page)

1.1. Code related 13

https://ieeexplore.ieee.org/document/9303402/
https://ieeexplore.ieee.org/abstract/document/6299294

Test Smells Catalog, Release 2.0

(continued from previous page)

function checkSomethingElse(in float pl) runs on ExampleComponent {
var charstring result;

if (p1 > 0) {
result := "foo";
pt.send(result);
} else {
result := "bar";
pt.send(result);
}
}
References:
Quality attributes

e - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

« Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.1.18 Duplicated Code

Definition:

* If you have duplicated code in tests, it makes it harder to refactor the implementation code because you have a
disproportionate number of tests to update. Tests should help you refactor with confidence, rather than be a large
burden that impedes your work on the code being tested.

Code Example:

assertEqual('Joe', person.getFirstName())
assertEqual ('Bloggs', person.getLastName())
assertEqual (23, person.getAge())

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* A Refactoring Tool for TTCN-3

14 Chapter 1. Contents

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.3594&rep=rep1&type=pdf

Test Smells Catalog, Release 2.0

* An Empirical Study into the Relationship Between Class Features and Test Smells

* Is duplicated code more tolerable in unit tests?

Test Smell Detection Tools: A Systematic Mapping Study

e What We Know About Smells in Software Test Code

e Writing good gherkin

1.1.1.19 Half A Helper Method

Definition:

TestQ: Exploring Structural and Maintenance Characteristics of Unit Test Suites

* Where there’s a utility method to help a test do its job, yet all calls to it are immediately followed by the exact
same code. This is because the method is only doing half the job it should, so your test has more boilerplate in

it.

Code Example:

function readFile(filename) {
// open file and return its string

}

function substituteId(file, id) {
const placeholder = 'REPLACE-VME';

// do global replace of the placeholder with id
// return that

}

// call site
const file = readFile('foo.txt');
const substituted = substituteId(file, currentId);

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

Test Smells - The Coding Craftsman

1.1. Code related

15

https://ieeexplore.ieee.org/document/7890581
https://stackoverflow.com/questions/129693/is-duplicated-code-more-tolerable-in-unit-tests
https://dl.acm.org/doi/10.1145/3463274.3463335
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.6409&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/8501942
https://techbeacon.com/app-dev-testing/7-ways-tidy-your-test-code
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.1.1.20 Missing Parameterised Test

Definition:
e When you did it the long way round because you didn’t bring in parameterisation

Code Example:

@ParameterizedTest
@CsvSource({
"a,A",
"b,B",
"bbb,BBB",
"bBbB, BBBB"
B
void capitalizerTurnsInputToCapitals(String input, String expected) {
assertThat(Capitalizer.toCapitals(input))
.isEqualTo(expected);
}

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

Test Smells - The Coding Craftsman

1.1.1.21 Missing Test Data Factory

Definition:
* Where every test has its own way of making the same test example data

Code Example:

import { createMockSession, createMockUser } from
'../../components/auth/__tests__/User.test.ts';

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

 Test Smells - The Coding Craftsman

16 Chapter 1. Contents

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.1.1.22 Multiple Tests Testing The Same Or Similar Things

Definition:
» Multiple tests are created that have the same test code, but change the values passed

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Anti-Patterns In Unit Testing

1.1.1.23 Reinventing The Wheel

Definition:

* While Cut and Paste Code Reuse deliberately makes copies of existing code to reduce the effort of writing tests,
it is also possible to accidently write the same sequence of statements in different tests.

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

» xUnit test patterns: Refactoring test code

1.1.1.24 Second Class Citizens

Definition:

* Test code isn’t as well refactored/structured as production code, containing a lot of duplicated code, making it
hard to maintain tests.

Also Known As:
* Test Code Duplication

References:

Quality attributes
e - Code Example

e - Cause and Effect

1.1. Code related 17

https://completedeveloperpodcast.com/anti-patterns-in-unit-testing/
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

* - Frequency

* - Refactoring

e Anti-Patterns - Digital Tapestry
» Smells in software test code: A survey of knowledge in industry and academia
* Unit testing Anti-patterns catalogue

* Unveiling 6 Anti-Patterns in React Test Code: Pitfalls to Avoid

1.1.1.25 Test Clones

Definition:
* Tests contain similar parts (e. g., introduced by copy&paste)

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Generating refactoring proposals to remove clones from automated system tests

* Hunting for smells in natural language tests

1.1.1.26 Test Code Duplication

Definition:

 This test smell normally identifies classes that contain test methods with repeated test code steps.
Also Known As:

* Second Class Citizen

Code Example:

class TestFlight(unittest.TestCase):
def test_mileage_init(self):
airLine = '2569'
mileage = 1000
flight = Flight(airLine,mileage)
self.assertEqual (flight.mileage, 1000)

def test_fuel_is_full(self):
airLine = '2569'
mileage = 1000
flight = Flight(airLine,mileage)
self.assertTrue(flight.fullFuel)

(continues on next page)

18 Chapter 1. Contents

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://itnext.io/unveiling-6-anti-patterns-in-react-test-code-pitfalls-to-avoid-fd7e5a3a7360
https://ieeexplore.ieee.org/abstract/document/7181438/
https://ieeexplore.ieee.org/abstract/document/6606682

Test Smells Catalog, Release 2.0

(continued from previous page)

def test_is_valid_air_line_code(self):
airLine = '2569'
mileage = 1000
flight = Flight(airLine,mileage)
self.assertTrue(flight.isValidAirLineCode())

if __name__ == '__main__
unittest.main(argv=['first-arg-is-ignored'], exit=False)

References:

Quality attributes

e - Code Example
¢ - Cause and Effect
* - Frequency

e - Refactoring

* A survey on test practitioners’ awareness of test smells

* An empirical analysis of the distribution of unit test smells and their impact on software maintenance

An exploratory study of the relationship between software test smells and fault-proneness

Are test smells really harmful? An empirical study

Automatic generation of smell-free unit tests

Categorising Test Smells

Did You Remember To Test Your Tokens?

Enhancing developers’ awareness on test suites’ quality with test smell summaries

How are test smells treated in the wild? A tale of two empirical studies

Inspecting Automated Test Code: A Preliminary Study

LCCSS: A Similarity Metric for Identifying Similar Test Code

On the diffusion of test smells in automatically generated test code: an empirical study

On the interplay between software testing and evolution and its effect on program comprehension

Refactoring Test Code

Refactoring Test Smells With JUnit 5: Why Should Developers Keep Up-to-Date?

Refactoring Test Smells: A Perspective from Open-Source Developers

Test Artifacts — The Practical Testing Book

Test Smell Detection Tools: A Systematic Mapping Study

Test code quality and its relation to issue handling performance

TestAXE: Automatically Refactoring Test Smells Using JUnit 5 Features

xUnit test patterns: Refactoring test code

1.1.

Code related 19

https://arxiv.org/abs/2003.05613
https://ieeexplore.ieee.org/document/6405253
https://ieeexplore.ieee.org/abstract/document/8847402/
https://link.springer.com/article/10.1007/s10664-014-9313-0
https://repositorio.ul.pt/handle/10451/56819
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3379597.3387471
https://lutpub.lut.fi/handle/10024/158751
https://sol.sbc.org.br/journals/index.php/jserd/article/download/1802/1807/7485
https://dl.acm.org/doi/abs/10.5555/1768961.1768982
https://dl.acm.org/doi/10.1145/3425269.3425283
https://dl.acm.org/doi/10.1145/2897010.2897016
https://link.springer.com/chapter/10.1007/978-3-540-76440-3_8
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.5499&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/9769994/
https://dl.acm.org/doi/10.1145/3425174.3425212
https://damorimrg.github.io/practical_testing_book/goodpractices/artifacts.html
https://dl.acm.org/doi/10.1145/3463274.3463335
https://ieeexplore.ieee.org/abstract/document/6862882/
https://sol.sbc.org.br/index.php/cbsoft_estendido/article/view/22311
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

1.1.1.27 Test Redundancy

Definition:
* Occurs when the removal of a test does not impact the effectiveness of the test suite

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Automatic generation of smell-free unit tests
* Improving Student Testing Practices through a Lightweight Checklist Intervention.

* Machine Learning-Based Test Smell Detection

Test Smell Detection Tools: A Systematic Mapping Study

1.1.1.28 The First And Last Rites

Definition:

* Where there’s some ritual/boilerplate at the start and end of most test bodies, suggesting a lack of common
setup/teardown code

Also Known As:
* Oops I Forgot The Setup
Code Example:

@Test
public void connectionWorks() {
database = openDatabase();

database.healthCheck();

database.close();

3
@Test
public void countRows() {

database = openDatabase();

assertThat (database.countAl1())
.isEqualTo(0);

database.close();

20 Chapter 1. Contents

https://repositorio.ul.pt/handle/10451/56819
https://repository.lib.ncsu.edu/bitstream/handle/1840.20/39743/etd.pdf?sequence=1
https://arxiv.org/abs/2208.07574
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

Test Smells - The Coding Craftsman

1.1.1.29 Two For The Price Of One

Definition:

* Sometimes a sign of missing parameterised tests — where a single test case is testing two use cases with the same
set up

Code Example:

private LocalDateTime now = LocalDateTime.now();
private LocalDateTime tomorrow = LocalDateTime.plus(l, DAYS);
private LocalDateTime yesterday = LocalDateTime.minus(l, DAYS);

@Test

public void dateComparisonWorksForPastAndFuture() {
assertDateComparison(now, tomorrow, "is in the future");
assertDateComparison(now, yesterday, "is in the past");

}

private void assertDateComparison(LocalDateTime baseline,
LocalDateTime compare,
String expected) {
assertEquals(expected, MyDates.describe(baseline, compare);

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

Test Smells - The Coding Craftsman

1.1. Code related 21

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.1.1.30 Very Similar Test Cases

Definition:
¢ Copy-pasting many similar chunks of test code to add new test cases;

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Anti-patterns of automated testing

1.1.2 Complex - Hard to understand

1.1.2.1 Absence Of Why

Definition:

» where the code of the test just IS and does nothing to explain the use case

References:

Quality attributes
* - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

Test Smells - The Coding Craftsman

1.1.2.2 Bad Comment Rate

Definition:
* The comment rate (number of comments per line) is too high or too low.

Code Example:

function ptc_CC_PR_MP_RQ_V_030(CSeq lo cCSeq s) runs on SipComponent {
var Request VvINVITERequest;
var Request vBYERequest;
var Request vACKRequest;
charstring vbranch := "";
initPTC(locCSeq s);

vDefault := activate(defaultCCPRPTC());

(continues on next page)

22

Chapter 1. Contents

https://medium.com/swlh/anti-patterns-of-automated-software-testing-b396283a4cb6
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

(continued from previous page)
alt {
[] SIPP.receive(INVITERequest rl)->
value VINVITERequest sendt_label {
TGuard.stop;
setHeadersOnReceiptOfInvite (VINVITERequest);

sendPTC2000KInvite();
setverdict(pass);
repeat;
}
[1 SIPP.receive(ACKRequest rl1(vCallId))-> value vACKRequest sendt_label {
vVia := vACKRequest.msgHeader.via;
if (ispresent(vVia.viaBody[0].viaParams)) {
var SemicolonParamlList tmp_params := vVia.viaBody[®].viaParams;

if (checkBranchPresent (tmp_params, vbranch)) {
if (match(v_branch, ValidBranch)) {
setverdict(pass);
} else {
setverdict(fail);
};
} else {
setverdict(fail)
Bf;
} else {
setverdict(fail)
BE;
cpA.send (CMCheckDone) ;
repeat;

}

[1 SIPP.receive(BYERequest rl(vCallId))-> value vBYERequest sendt_label {
setHeadersOnReceiptO fBye(vBYERequest);
send2000K() ;

}

[1 cpA.receive(CMStop) {
all timer.stop;
stop;

3

[] SIPP.receive {
repeat;

}

[1 TGuard.timeout {
setverdict(fail);
stop;

}

}
}

References:

Quality attributes
* - Code Example

¢ - Cause and Effect

1.1. Code related 23

Test Smells Catalog, Release 2.0

- Frequency

- Refactoring

An approach to quality engineering of TTCN-3 test specifications
Pattern-based Smell Detection in TTCN-3 Test Suites

Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.2.3 Boilerplate Hell

Definition:

» where you can’t read the test because there’s so much code, perhaps a case of missing test data factory

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Test Smells - The Coding Craftsman

1.1.2.4 Comments

Definition:

* When something needs to be explained, it is probably better to move into a method with a descriptive name

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

A Refactoring Tool for TTCN-3

24

Chapter 1. Contents

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.3594&rep=rep1&type=pdf

Test Smells Catalog, Release 2.0

1.1.2.5 Complicated Logic In Tests

Definition:

* Complicated logic within the tests themselves
Code Example:

* No code examples yet...

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Unveiling 6 Anti-Patterns in React Test Code: Pitfalls to Avoid

1.1.2.6 Hard-Coded Test Data

Definition:

* Data values in the fixture, assertions or arguments of the SUT are hard-coded in the Test Method obscuring
cause-effect relationships between inputs and expected outputs.

Code Example:

public void testAddItemQuantity_severalQuantity_v12(){
// Setup Fixture
Customer cust = createACustomer(new BigDecimal("30"));
Product prod = createAProduct(new BigDecimal("19.99"));
Invoice invoice = createInvoice(cust);
// Exercise SUT
invoice.addItemQuantity(prod, 5);
// Verify Outcome
LineItem expected = new LineItem(invoice, prod, 5,
new BigDecimal("30"), new BigDecimal("69.96"));
assertContainsExactlyOnelLineItem(invoice, expected);

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

- Refactoring

1.1. Code related 25

https://itnext.io/unveiling-6-anti-patterns-in-react-test-code-pitfalls-to-avoid-fd7e5a3a7360

Test Smells Catalog, Release 2.0

* Detecting redundant unit tests for Aspect] programs

¢ Obscure Test

1.1.2.7 Hard-Coded Values

Definition:

 Scalar values or value objects that are used directly in fixture setup, as parameters in the test exercise or as
expected values in the verification. That is, they are not assigned to a named constant or variable.

Code Example:
public function testGetTranslationFileTimestamp()
{
$this->fileManagerMock->expects($this->once())
->method('getTranslationFileTimestamp')
->willReturn(1445736974);
$this->assertEquals (1445736974, $this->model->getTranslationFileTimestamp());
}
References:
Quality attributes

* - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* Hunting for smells in natural language tests

e Test Smell: Hard Coded Values

1.1.2.8 Hard-To-Test Code

Definition:

* Legacy software (any software that doesn’t have a complete suite of automated tests) can be hard to test since we
are typically writing the tests “last” (after the software already exists.) If the design of the software is not con-
ducive to automated testing, we may be forced to use Indirect Testing (see Obscure Test) via awkward interfaces
that involve a lot of accidental complexity; that may result in Fragile Tests or a Fragile Fixture.

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

26 Chapter 1. Contents

https://ieeexplore.ieee.org/abstract/document/4021983
http://xunitpatterns.com/Obscure%20Test.html
https://ieeexplore.ieee.org/abstract/document/6606682
https://www.integer-net.com/test-smell-hard-coded-values/

Test Smells Catalog, Release 2.0

* Automatic generation of smell-free unit tests

* Enhancing developers’ awareness on test suites’ quality with test smell summaries
» xUnit test patterns: Refactoring test code

 xUnit test patterns: Refactoring test code

» xUnit test patterns: Refactoring test code

» xUnit test patterns: Refactoring test code

1.1.2.9 Hard-To-Write Test

Definition:
* Making hacks that need an explanation or having complicated setups, so that a scenario can be tested

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Anti-patterns of automated testing

1.1.2.10 Hardcoded Environment Configuration

Definition:

* Imagine same checks must be run against both Firefox and Chrome; or against local and then pre-production test
environments. No way to do it if you hardcoded references to browser type, server host or databases.

References:

Quality attributes
* - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

e Anti-patterns in test automation

1.1. Code related 27

https://repositorio.ul.pt/handle/10451/56819
https://lutpub.lut.fi/handle/10024/158751
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://medium.com/swlh/anti-patterns-of-automated-software-testing-b396283a4cb6
https://www.codementor.io/@mgawinecki/anti-patterns-in-test-automation-101c6vm5jz

Test Smells Catalog, Release 2.0

1.1.2.11 Hardcoded Environment

Definition:

 The test contains hardcoded references to the environment when the same requirement must be run against dif-

ferent test environments instead of having an environment-agnostic test.

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Anti-patterns in test automation
On the Maintenance of System User Interactive Tests

Smells in System User Interactive Tests

1.1.2.12 Hardcoded Literals

Definition:

Hardcoding number of sync tasks

Code Example:

No code examples yet...

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Test Development Patterns and Anti-Patterns - Medium

28

Chapter 1. Contents

https://www.codementor.io/@mgawinecki/anti-patterns-in-test-automation-101c6vm5jz
https://orbilu.uni.lu/handle/10993/48254
https://arxiv.org/abs/2111.02317
https://medium.com/test-go-where/test-development-patterns-and-anti-patterns-78820e1802df

Test Smells Catalog, Release 2.0

1.1.2.13 Hardcoded Test Data

Definition:

* maintaning hardcoded test data becomes a nightmare
Also Known As:

* Magic Strings

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

e Anti-patterns in test automation

1.1.2.14 Herp Derp

Definition:
* Words and comments in test code or names that add nothing, like simple or test or //given

Code Example:

1. Calling the test method test in any way - we know it’s a test, get on with it

2. Weak adjective expressions like simple - what makes it simple?

3. Commenting a line of code with a description of what that line’s implementation is.
—doing - e.g. // assert that it's true - we can see what it’s doing... WHY is it doing.
—it?

4. Pasting in the same comments from other tests whether or not they’re relevant - this.
<»is probably a case for reducing boilerplate so you don’t need as much paste, or as.
—much comment

5. Naming test inputs and outputs after their type, rather than their purpose in the.
—test - e.g. String stringl = code.getUserName()

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

e - Refactoring

Test Smells - The Coding Craftsman

1.1. Code related 29

https://www.codementor.io/@mgawinecki/anti-patterns-in-test-automation-101c6vm5jz
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.1.2.15 Hidden Complexity

Definition:

* A piece of code that uses innocent looking API that in fact performs a lot of computation.

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

» Parameterized Test Patterns For Effective Testing with Pex

1.1.2.16 It Looks Right To Me

Definition:
* Where the test data for negative cases makes the test hard to understand

Code Example:

expect(getFieldCaseInsensitive(obj, 'username'))
.toEqual ('Mr User');

expect(getFieldCaseInsensitive(obj, 'Username'))
.toEqual ('Mr User');

expect(getFieldCaseInsensitive(obj, 'UserNaME'))
.toEqual ('Mr User');

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

* - Refactoring

Test Smells - The Coding Craftsman

30

Chapter 1. Contents

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.6145&rep=rep1&type=pdf
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.1.2.17 Keyword Driven Testing

Definition:

* Keyword Driven Testing (KDT) is a remnant from the early to mid-2000s when QTP aka UFT was popular. At
one point, we believed that somehow we can write test automation code in such a way that manual testers will
be able to string together a bunch of keywords aka functions to make tests. We used Excel sheets to design test
cases by stringing together a bunch of functions

Code Example:
* No code examples yet...

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

¢ - Refactoring

» Top 17 Automated Testing Best Practices (Supported By Data)

1.1.2.18 Lack Comments

Definition:

¢ This smell comes from the lack of comments in the test code, which makes a test case hard to understand
Code Example:

* No code examples yet...

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

- Refactoring

 Improving Student Testing Practices through a Lightweight Checklist Intervention.

1.1. Code related 31

https://ultimateqa.com/automation-patterns-antipatterns/
https://repository.lib.ncsu.edu/bitstream/handle/1840.20/39743/etd.pdf?sequence=1

Test Smells Catalog, Release 2.0

1.1.2.19 Large Macro Component

Definition:
* A single macro component contains too many primitive components, macro events, and macro components

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Bad smells and refactoring methods for GUI test script

1.1.2.20 Large Module

Definition:

* indicates that the module may be trying to do too much. It becomes hard to read and it likely combines too many
distinct code parts which are better off in multiple modules

Also Known As:
e Large Class

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

¢ A Refactoring Tool for TTCN-3

1.1.2.21 Large Test File

Definition:
* Things can be hard to find in a large test file and its documentation value is lost.

References:

Quality attributes
e - Code Example

¢ - Cause and Effect

32 Chapter 1. Contents

https://ieeexplore.ieee.org/abstract/document/6299294
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.3594&rep=rep1&type=pdf

Test Smells Catalog, Release 2.0

- Frequency

* - Refactoring

* Smells of Testing (signs your tests are bad)

1.1.2.22 Long Class

Definition:

¢ To properly execute your automated test, your code must open your application in a browser, perform the neces-
sary actions on the application, and then verify the resulting state of the application. While these are all needed
for your test, these are different responsibilities, and having all of these responsibilities together within a single
class is a code smell. This smell makes it difficult to grasp the entirety of what’s contained within the class,
which can lead to redundancy and maintenance challenges.

References:

Quality attributes
* - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* Writing good gherkin

1.1.2.23 Long Function

Definition:

* Long functions are hard to understand and indirection can be better supported by small functions
Also Known As:

* Long Method

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* A Refactoring Tool for TTCN-3

1.1. Code related 33

https://jakescruggs.blogspot.com/2009/04/smells-of-testing-signs-your-tests-are.html
https://techbeacon.com/app-dev-testing/7-ways-tidy-your-test-code
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.3594&rep=rep1&type=pdf

Test Smells Catalog, Release 2.0

1.1.2.24 Long Macro Event

Definition:

* A macro event (or keyword) contains too many actions.

Also Known As:
* Long Keyword

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Bad smells and refactoring methods for GUI test script

1.1.2.25 Long Method

Definition:

« It’s where a method or function has too many responsibilities. Many times a method does not start off being too
long, but over time it grows and grows, taking on additional responsibilities. This poses an issue when tests want
to call into a method to do one thing, but will ultimately have multiple other things executed as well.

Also Known As:
* Long Function

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Writing good gherkin

34

Chapter 1. Contents

https://ieeexplore.ieee.org/abstract/document/6299294
https://techbeacon.com/app-dev-testing/7-ways-tidy-your-test-code

Test Smells Catalog, Release 2.0

1.1.2.26 Long Statement Block

Definition:

* Long statement block in function, test case or altstep. A long function is more difficult to understand than a
short one. Although the use of short functions (i.e. methods) is especially important for modern objectoriented
languages, short functions have a certain importance for TTCN-3 as well. Long statement blocks in functions,
test cases and altsteps should be decomposed into short functions with meaningful names.

Code Example:

function ptc_CC_PR_MP_RQ_V_030(CSeq lo cCSeq s) runs on SipComponent {
var Request vINVITERequest;
var Request vBYERequest;
var Request vACKRequest;
charstring vbranch := "";
initPTC(locCSeq s);
vDefault := activate(defaultCCPRPTC());
alt {
[1] SIPP.receive(INVITERequest rl)->
value vINVITERequest sendt_label {
TGuard.stop;
setHeadersOnReceiptOfInvite (VINVITERequest);

sendPTC2000KInvite();
setverdict(pass);
repeat;
}
[1 SIPP.receive(ACKRequest rl1(vCallId))-> value vACKRequest sendt_label {
vVia := vACKRequest.msgHeader.via;
if (ispresent(vVia.viaBody[®].viaParams)) {
var SemicolonParamList tmp_params := vVia.viaBody[®].viaParams;

if (checkBranchPresent (tmp_params, vbranch)) {
if (match(v_branch, ValidBranch)) {
setverdict(pass);
} else {
setverdict(fail);
};
} else {
setverdict(fail)
it
} else {
setverdict(fail)
T
cpA.send(CMCheckDone) ;
repeat;

}

[1 SIPP.receive(BYERequest rl1(vCallId))-> value vBYERequest sendt_label {
setHeadersOnReceiptO fBye(vBYERequest);
send2000K() ;

}

[1 cpA.receive(CMStop) {
all timer.stop;
stop;

}

(continues on next page)

1.1. Code related 35

Test Smells Catalog, Release 2.0

(continued from previous page)

[] SIPP.receive {
repeat;

}

[1 TGuard.timeout {
setverdict(fail);
stop;

}

}
}

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

e - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

* Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.2.27 Long Test Steps

Definition:
* One or many test steps are very long, performing a lot of actions on the system under test.

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Hunting for smells in natural language tests
* On the Maintenance of System User Interactive Tests

e Smells in System User Interactive Tests

36 Chapter 1. Contents

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16
https://ieeexplore.ieee.org/abstract/document/6606682
https://orbilu.uni.lu/handle/10993/48254
https://arxiv.org/abs/2111.02317

Test Smells Catalog, Release 2.0

1.1.2.28 Long Test

Definition:

* A Long Test is a test that consists of lot of code and statements. Such tests are mostly (but not necessarily)
complex and badly document the purpose of the test and the application code. Furthermore they tend to test too
much functionality, maybe even getting eager.

Also Known As:
¢ Obscure Test

Code Example:

Subject under test
class Stack
def initialize
@items = []
end

def push(item)
@items << item
end

def pop
@items.pop
end

def peek
@items.last
end

def depth
@items.size
end
end

Test
class Long <
def test_make_sure_everything works
subject = .new

Test Push

subject.push("A")
subject.push("B")
subject.push("C")

assert_equal "C", subject.pop
assert_equal "B", subject.pop
assert_equal "A", subject.pop

Test Peek
subject.push("D"

)
subject.push("E")

(continues on next page)

1.1. Code related 37

Test

Smells Catalog, Release 2.0

assert_equal "E", subject.peek
subject.pop

assert_equal "D", subject.peek
subject.pop

Test Depth

subject.push("F")
subject.push("G")

assert_equal 2, subject.depth
Test Pop

subject.pop

subject.pop

assert_equal 0, subject.depth
assert_equal nil, subject.pop

end

end

(continued from previous page)

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

A workbook repository of example test smells and what to do about them

Assessing test quality - TestLint

Categorising Test Smells

Detection of test smells with basic language analysis methods and its evaluation

Rule-based Assessment of Test Quality

Test Smell Detection Tools: A Systematic Mapping Study

38

Chapter 1. Contents

https://github.com/testdouble/test-smells
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.9594
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/10123551/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

1.1.2.29 Long/Complex/Verbose/Obscure Test

Definition:
« It is difficult to understand the test at a glance. The test usually has excessive lines of code.

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

e What We Know About Smells in Software Test Code

1.1.2.30 Magic Number Test

Definition:

* This smell occurs when a test method contains unexplained and undocumented numeric literals as parameters
or as values to identifiers. These magic values do not sufficiently indicate the meaning/purpose of the number.
Hence, they hinder code understandability. Consequently, they should be replaced with constants or variables,
thereby providing a descriptive name for the value.

Code Example:

@Test
public void testGetLocalTimeAsCalendar() {
Calendar localTime = calc.getlLocalTimeAsCalendar(BigDecimal.valueOf(15.5D), Calendar.
—getInstance());
assertEquals(15, localTime.get(Calendar.HOUR_OF_DAY));
assertEquals (30, localTime.get(Calendar.MINUTE));
}

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* A survey on test practitioners’ awareness of test smells
* An Exploratory Study on the Refactoring of Unit Test Files in Android Applications
* Analyzing Test Smells Refactoring from a Developers Perspective

* Automatic Identification of High-Impact Bug Report by Product and Test Code Quality

1.1. Code related 39

https://ieeexplore.ieee.org/document/8501942
https://arxiv.org/abs/2003.05613
https://dl.acm.org/doi/10.1145/3387940.3392189
https://dl.acm.org/doi/10.1145/3571473.3571487
https://huang.zj.cn/pdf/J13.pdf

Test Smells Catalog, Release 2.0

Automatic generation of smell-free unit tests

Characterizing High-Quality Test Methods: A First Empirical Study

Handling Test Smells in Python: Results from a Mixed-Method Study

How are test smells treated in the wild? A tale of two empirical studies

Investigating Severity Thresholds for Test Smells

Investigating Test Smells in JavaScript Test Code

On the Distribution of “Simple Stupid Bugs” in Unit Test Files: An Exploratory Study

On the diffusion of test smells and their relationship with test code quality of Java projects
On the distribution of test smells in open source Android applications: an exploratory study
On the influence of Test Smells on Test Coverage

On the test smells detection: an empirical study on the jnose test accuracy

On the use of test smells for prediction of flaky tests

PyNose: A Test Smell Detector For Python

Pytest-Smell: a smell detection tool for Python unit tests

Refactoring Test Smells: A Perspective from Open-Source Developers

Software Unit Test Smells

Test Artifacts — The Practical Testing Book

Test Smell Detection Tools: A Systematic Mapping Study

The secret life of test smells-an empirical study on test smell evolution and maintenance

What the Smell? An Empirical Investigation on the Distribution and Severity of Test Smells in Open Source
Android Applications

tsDetect: an open source test smells detection tool

1.1.2.31 Magic Values

Definition:

¢ Magic Values are literals not defined as constant. Numeric literals are called Magic Numbers, string literals are

called Magic Strings.

Code Example:

testcase SIP_CC_PR_TR_SE_TI_004 (inout CSeq loc_CSeq_s, CSeq loc_CSeq_ptcs)
runs on SipComponent system SipInterfaces

{

var SipComponent vptc;
var Response vResponse;
var float vdelay;
vDefault := activate(defaultCCPR());
vptc := SipComponent.create;
initConfigl(mtc, vptc, system);
initMTCphasel(loc_CSeq_s);
setHeadersPtcInvite(loc_CSeq_s);
vptc.start(ptcWaitCheckInviteCompletedState(loc_CSeq_ptcs));
(continues on next page)

40

Chapter 1. Contents

https://repositorio.ul.pt/handle/10451/56819
https://ieeexplore.ieee.org/document/9796158/
https://dl.acm.org/doi/10.1145/3474624.3477066
https://sol.sbc.org.br/journals/index.php/jserd/article/download/1802/1807/7485
https://dl.acm.org/doi/abs/10.1145/3379597.3387453
https://dl.acm.org/doi/10.1145/3482909.3482915
https://ieeexplore.ieee.org/document/9463091
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://dl.acm.org/doi/10.5555/3370272.3370293
https://dl.acm.org/doi/10.1145/3350768.3350775
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://dl.acm.org/doi/abs/10.1145/3482909.3482916
https://ieeexplore.ieee.org/document/9678615/
https://dl.acm.org/doi/10.1145/3533767.3543290
https://dl.acm.org/doi/10.1145/3425174.3425212
https://testsmells.org/
https://damorimrg.github.io/practical_testing_book/goodpractices/artifacts.html
https://dl.acm.org/doi/10.1145/3463274.3463335
https://link.springer.com/article/10.1007/s10664-021-09969-1
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://dl.acm.org/doi/10.1145/3368089.3417921

Test Smells Catalog, Release 2.0

(continued from previous page)

initMTCphase2();
SIPP.send(INVITE Request s2(vRequestUri, vCallId, loc_CSeq_s, vFrom, vTo, vVia)) to.
—sentlabel;
vCSeq := loc_CSeq_s;
awaitingFirstAnyFinalResp(vResponse, loc_CSeq_s);
setHeadersOnReceiptOfResponse(loc_CSeq_s, vResponse);
// First Repetition
repeatRespInTime (vResponse, loc_CSeq_s, PXT1 * 1.5);
// Second Repetition
vdelay := minValue(2.0 * PXT1, PXT2) * 1.5;
repeatRespInTime (vResponse, loc_CSeq_s, vdelay);
// Third repetition
vdelay := minValue(4.0 * PXT1, PXT2) * 1.1;
repeatRespInTime (vResponse, loc_CSeq_s, vdelay);
sendACK(loc_CSeq_s);
synchroniseCheckDone() ;
waitendptc(vptc);
} // end testcase SIP_CC_PR_TR_SE_TI_004

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

e An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.2.32 Obscure Test

Definition:

e It is difficult to understand the test at a glance. Automated tests should serve at least two purposes. First, they
should act as documentation of how the system under test (SUT) should behave; we call this Tests as Documenta-
tion (see Goals of Test Automation on page X). Second, they should be a self-verifying executable specification.
These two goals are often contradictory because the level of detailed needed for tests to be executable may make
the test so verbose as to be difficult to understand.

Also Known As:
* Long Test, Complex Test, Verbose Test

Code Example:

context 'the element does not exist' do
before do
(continues on next page)

1.1. Code related 41

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

(continued from previous page)
contents = %(
<?xml version="1.0" encoding="UTF-8"7>
<rss version="2.0" xmlns:atom="http://www.w3.org/2005/Atom" xmlns:content="http://
<purl.org/rss/1.0/modules/content/" xmlns:itunes="http://www.itunes.com/dtds/podcast-1.
—0.dtd">
<channel>
<item></item>
</channel>
</rss>

)

xml_doc = Nokogiri::XML(contents)

episode_element = xml_doc.xpath('//item").first

@rss_feed_episode = RSSFeedEpisode.new(episode_element)
end

it 'returns an empty string' do
expect(@rss_feed_episode.content('title')).to eq('")

end

end

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

e - Refactoring

* An analysis of information needs to detect test smells

* Detecting redundant unit tests for Aspect] programs

* Did You Remember To Test Your Tokens?

* Enhancing developers’ awareness on test suites’ quality with test smell summaries
* Inspecting Automated Test Code: A Preliminary Study

* Obscure Test

* On the Maintenance of System User Interactive Tests

* Rails Testing Antipatterns

e Smells in System User Interactive Tests

e Test code quality and its relation to issue handling performance
* Test smell: Obscure Test

» xUnit test patterns: Refactoring test code

 xUnit test patterns: Refactoring test code

42 Chapter 1. Contents

https://www2.swc.rwth-aachen.de/docs/teaching/seminar2016/FsSE%20CTRelEng%202016.pdf#page=23
https://ieeexplore.ieee.org/abstract/document/4021983
https://dl.acm.org/doi/10.1145/3379597.3387471
https://lutpub.lut.fi/handle/10024/158751
https://dl.acm.org/doi/abs/10.5555/1768961.1768982
http://xunitpatterns.com/Obscure%20Test.html
https://orbilu.uni.lu/handle/10993/48254
https://thoughtbot.com/upcase/videos/testing-antipatterns
https://arxiv.org/abs/2111.02317
https://ieeexplore.ieee.org/abstract/document/6862882/
https://www.codewithjason.com/test-smell-obscure-test/
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

1.1.2.33 Optimizing Dry

Definition:
 Pursuing DRYness by creating variables and functions in tests;

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Anti-patterns of automated testing

1.1.2.34 Over Refactoring Of Tests

Definition:
* where you can’t read them because they’ve been DRYed out to death

Code Example:

// Over Refactoring Of Test
assertThat (calculateAnswer (INPUT))
.isEqualTo (EXPECTED) ;

//before
assertThat (calculateAnswercountTheWordsIn("This is a string"))
.isEqualTo(4);

References:

Quality attributes
e - Code Example
- Cause and Effect
* - Frequency

* - Refactoring

 Test Smells - The Coding Craftsman

1.1. Code related

43

https://medium.com/swlh/anti-patterns-of-automated-software-testing-b396283a4cb6
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.1.2.35 Overcommented Test

Definition:

¢ Overcommented Tests dene too many comments, obfuscating the code and distracting from the purpose of the
test.

Code Example:

DebuggerTest >> #testUnwindDebuggerWithStep
"test if unwind blocks work properly when a debugger is closed"
| sema process debugger top |
sema := Semaphore forMutualExclusion.
self assert: sema isSignaled.
process := [sema critical:[sema wait]]
forkAt: Processor userInterruptPriority.
self deny: sema isSignaled.
"everything set up here - open a debug notifier"
debugger := Debugger openInterrupt: ’test’ onProcess: process.
"get into the debugger"
debugger debug.
top := debugger topView.
"set top context"
debugger toggleContextStackIndex: 1.
"do single step"
debugger doStep.
"close debugger"
top delete.
"and see if unwind protection worked"
self assert: sema isSignaled

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Assessing test quality - TestLint
* Automatic generation of smell-free unit tests
* Categorising Test Smells

* Rule-based Assessment of Test Quality

Test Smell Detection Tools: A Systematic Mapping Study

44 Chapter 1. Contents

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.9594
https://repositorio.ul.pt/handle/10451/56819
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

1.1.2.36 Overly Complex Tests

Definition:

* Unit tests, like production code, should be easily understandable. In general, a programmer must understand the
intent of an individual test as fast as possible. If a test is so complicated that you can’t immediately tell if it is
correct or not, it makes it very difficult to determine if the cause of a test failure is bad production code or bad
test code. Even worse, this allows the possibly of code that incorrectly passes a test.

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* JUnit Anti-patterns

1.1.2.37 Overly Dry Tests

Definition:

* DRY (Don’t Repeat Yourself) is a good idea, but pulling out all repetition can lead to some very hard to understand
tests.

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

 Categorising Test Smells

* Smells of Testing (signs your tests are bad)

1.1.2.38 Overuse Of Abstractions

Definition:

* Because test code is documentation it needs to be descriptive and easy to follow. Instead of DRY test code should
be DAMP (Descriptive And Meaningful Phrases). Since the goal is to understand the test and the code you are
testing some repetition may be necessary.

Also Known As:

¢ it’s too DRY

1.1. Code related 45

https://exubero.com/junit/anti-patterns/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://jakescruggs.blogspot.com/2009/04/smells-of-testing-signs-your-tests-are.html

Test Smells Catalog, Release 2.0

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

* - Refactoring

* Anti-Patterns In Unit Testing

1.1.2.39 Self Important Test Data

Definition:
* Test data is more complex than is needed to exercise some behavior in a test.

Code Example:

Subject under test
def gps_within_location?(gps, location)
boundaries = boundaries_for_zip(location.zip)

boundaries.northWest.lat >= gps.lat &&
boundaries.southEast.lat <= gps.lat &&
boundaries.northEast.lng >= gps.lng &&
boundaries.southWest.lng <= gps.lng
end

Test
class SelfImportantTestData < SmellTest
def test_gps_inside_location

gps = OpenStruct.new(
altitude: 3000,
course: 3.62,
horizontalAccuracy: 10,
lat: 43,
Ing: -77,
secondsSincelLastUpdate: 4,
speed: 3,
utcOfLastFix: 180145,
verticalAccuracy: 15

)

location = OpenStruct.new(
name: 'Cup O Joe',
streetlLinel: '8312 Mulberry St',
streetlLine2: 'Lot #326 c/o very detailed test data',
city: 'Grandview Heights',
state: 'OH',
stateFullName: 'Ohio',
zip: 43221,
zipPlus4: 8312

(continues on next page)

46 Chapter 1. Contents

https://completedeveloperpodcast.com/anti-patterns-in-unit-testing/

Test Smells Catalog, Release 2.0

(continued from previous page)

)
result = gps_within_location?(gps, location)

assert_equal true, result
end

def test_gps_not_inside_location

gps = OpenStruct.new(
altitude: 4000,
course: 14.18,
horizontalAccuracy: 5,
lat: 48,
Ing: -77,
secondsSincelLastUpdate: 2,
speed: 1,
utcOfLastFix: 141445,
verticalAccuracy: 25

)

location = OpenStruct.new(
name: 'J.F.K Elementary School',
streetLinel: '1438 Soledad St',
streetLine2: nil,
city: 'Columbus',
state: 'OH',
stateFullName: 'Ohio',
zip: 43221,
zipPlus4: 4294

)

result = gps_within_location?(gps, location)

assert_equal false, result
end
end

Fake production implementations to simplify example test of subject
def boundaries_for_zip(zip)
OpenStruct.new(
northWest: OpenStruct.new(lat: 45, 1lng: -80),
southWest: OpenStruct.new(lat: 40, lng: -80),
southEast: OpenStruct.new(lat: 40, lng: -75),
northEast: OpenStruct.new(lat: 45, 1lng: -75)
)

end

References:

Quality attributes
* - Code Example

¢ - Cause and Effect

1.1. Code related 47

Test Smells Catalog, Release 2.0

* - Frequency

* - Refactoring

* A workbook repository of example test smells and what to do about them

1.1.2.40 Tests Are Difficult To Write

Definition:

« If you have an exorbitantly difficult time writing tests, even as a newbie, you should take a critical look at the
code you’re trying to test. It usually indicates excessive coupling.

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

¢ Unit Testing Smells: What Are Your Tests Telling You?

1.1.2.41 Using Complicated Data Store

Definition:

» The logic to read and manage Excel adds extra overhead to your test automation that isn’t necessary. You will
need to write 100s of lines of code just to manage an Excel object and read data based on column headers and
row locations. It’s not easy and is prone to error.

Code Example:
* No code examples yet...

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

e Top 17 Automated Testing Best Practices (Supported By Data)

48 Chapter 1. Contents

https://github.com/testdouble/test-smells
https://dzone.com/articles/unit-testing-smells-what-are-your-tests-telling-yo
https://ultimateqa.com/automation-patterns-antipatterns/

Test Smells Catalog, Release 2.0

1.1.2.42 Using Complicated X-Path Or Css Selectors

Definition:

» Using element identification selectors that have long chains from the DOM in them leads to fragile tests, as any
change to that chain in the DOM will break your tests.

Code Example:

private static readonly By TeaTypeSelector =
By.CssSelector(
'#input-tea-type < div < div.TeaSearchRow < div.TeaSearchCell.no < div:nth-
—child(2) < label');

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Five automated acceptance test anti-patterns

1.1.2.43 Using Test Case Inheritance To Test Source Code Polymorphism

Definition:

¢ Developers may implement inheritance in test cases to test source code polymorphism so that code duplication of
common test methods can be reduced (i.e., following the DRY principle — “Don’t Repeat Yourself””). However,
sometimes the unnecessary inheritance relationship in test cases may increase the difficulty of test maintenance
and make test evolution more error-prone.

Code Example:
* No code examples yet...

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Revisiting Test Impact Analysis in Continuous Testing From the Perspective of Code Dependencies

1.1. Code related 49

https://alisterbscott.com/2015/01/20/five-automated-acceptance-test-anti-patterns/
https://ieeexplore.ieee.org/document/9303402/

Test Smells Catalog, Release 2.0

1.1.2.44 Verbose Test

Definition:

¢ A test method with more than 30 lines. It may indicate that the method has several responsibilities, impacting
the test method maintenance.

Also Known As:
¢ Obscure Test

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

» Automatic Identification of High-Impact Bug Report by Product and Test Code Quality
* Automatic generation of smell-free unit tests

* Handling Test Smells in Python: Results from a Mixed-Method Study

* Investigating Severity Thresholds for Test Smells

* On the diffusion of test smells and their relationship with test code quality of Java projects
* On the influence of Test Smells on Test Coverage

* On the test smells detection: an empirical study on the jnose test accuracy

* On the use of test smells for prediction of flaky tests

* Smart prediction for refactorings in the software test code

* TEMPY: Test Smell Detector for Python

* Test Smell Detection Tools: A Systematic Mapping Study

* TestQ: Exploring Structural and Maintenance Characteristics of Unit Test Suites

1.1.2.45 What Are We Testing?

Definition:

* where the test data, or the way we produce it, is not self-explanatory for the use case. This is the general case of
many of the below smells, but also includes how test data is represented in the code.

References:

Quality attributes
* - Code Example
e - Cause and Effect

* - Frequency

50 Chapter 1. Contents

https://huang.zj.cn/pdf/J13.pdf
https://repositorio.ul.pt/handle/10451/56819
https://dl.acm.org/doi/10.1145/3474624.3477066
https://dl.acm.org/doi/abs/10.1145/3379597.3387453
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://dl.acm.org/doi/10.1145/3350768.3350775
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://dl.acm.org/doi/abs/10.1145/3482909.3482916
https://dl.acm.org/doi/10.1145/3474624.3477070
https://dl.acm.org/doi/10.1145/3555228.3555280
https://dl.acm.org/doi/10.1145/3463274.3463335
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.6409&rep=rep1&type=pdf

Test Smells Catalog, Release 2.0

e - Refactoring

 Test Smells - The Coding Craftsman

1.1.3 In association with production code

1.1.3.1 Behavior Sensitivity

Definition:
» Behavior Sensitivity is when changes to the SUT cause other tests to fail.

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

» Categorising Test Smells

» xUnit test patterns: Refactoring test code

1.1.3.2 Changing Implementation To Make Tests Possible

Definition:
* Changing the implementation solely for the sake of making testing possible

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Anti-patterns of automated testing

1.1. Code related 51

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://medium.com/swlh/anti-patterns-of-automated-software-testing-b396283a4cb6

Test Smells Catalog, Release 2.0

1.1.3.3 Code Pollution

Definition:

« It takes place when you introduce additional code to your main code base in order to enable unit testing

Code Example:
public class OrderRepository
{
public void Save(Order order)
{
/7': L. 7':/
}
public Order GetById(long id)
{
/;': L. ;':/
}
}
[Fact]
public void Some_integration_test()
{
// Arrange

var repository = new OrderRepository();
var service = new OrderService(repository);
long customerId = 42;

// Act

service.DoSomething(customerId) ;

// Assert

IReadOnlyList<Order> orders = repository.GetByCustomerId(customerId); // Code added.
—for the use in this unit test

/* validate orders */

}

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Code pollution

52 Chapter 1. Contents

https://enterprisecraftsmanship.com/posts/code-pollution/

Test Smells Catalog, Release 2.0

1.1.3.4 Code Run Only By Tests

Definition:

* Dead code (never touched in production) is very confusing to the developer trying to understand the system.

Tested dead code doubly so.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

Smells of Testing (signs your tests are bad)

1.1.3.5 Context Logic In Production Code

Definition:

* When the production code becomes aware of the context in which it is used.

Code Example:

public static void SaveToDatabase(Customer customerToWrite)
{
if (AreWeTesting)
WriteWithMockDatabase(customerToWrite) ;
else
Write(customerToWrite);

}

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

* - Refactoring

e Unit Testing Smells: What Are Your Tests Telling You?

1.1. Code related

53

https://jakescruggs.blogspot.com/2009/04/smells-of-testing-signs-your-tests-are.html
https://dzone.com/articles/unit-testing-smells-what-are-your-tests-telling-yo

Test Smells Catalog, Release 2.0

1.1.3.6 Equality Pollution

Definition:

* The code that is put into production contains logic that should be exercised only during tests... A system that
behaves one way in the test lab and an entirely different way in production is a recipe for disaster!

Code Example:

/// <summary>

/// Verifies that two objects are equal, using a default comparer.

/// </summary>

/// <typeparam name="T">The type of the objects to be compared</typeparam>

/// <param name="expected'>The expected value</param>

/// <param name="actual">The value to be compared against</param>

/// <exception cref="EqualException">Thrown when the objects are not equal</exception>

public static void Equal<T>(T expected, T actual)

{
Equal (expected, actual, GetEqualityComparer<T>());

}

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

* How to Compare Object Instances in your Unit Tests Quickly and Easily

» xUnit test patterns: Refactoring test code

1.1.3.7 Fire And Forget

Definition:

* A test that’s at risk of exiting prematurely, typically before its assertions can run and fail the test run if necessary
Also Known As:

¢ Plate-Spinning
Code Example:

Subject under test
def load_user(id)
path = "/users/#{id}"

get(path) { |er, user|
user.resolved_via = path
yield er, user if block_given?

}

(continues on next page)

54 Chapter 1. Contents

https://buildplease.com/pages/testing-deep-equalilty/
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

(continued from previous page)

end

Test
class FireAndForget < SmellTest
include UnreliableMinitestPlugin

def test_gets_user_and_decorates_path
load_user(42) { |er, user|
assert_equal "/users/42", user.resolved_via
assert_equal "Jo", user.name
3
end
end

Fake production implementations to simplify example test of subject
def get(path)
Thread.new do
sleep 0.01 if rand < 0.5 # sometimes it takes time
yield nil, OpenStruct.new(name: "Jo") if block_given?
end
end

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* A workbook repository of example test smells and what to do about them
* Smells in software test code: A survey of knowledge in industry and academia

» Toward static test flakiness prediction: a feasibility study

1.1.3.8 For Testers Only

Definition:

* This smell arises when a production class contains methods only used by test methods. This kind of production
classes should be removed, since it does not provide functionalities used by other classes in the system. From
the testing side, this smell involves an extra effort needed in order to comprehend and modify as assertions.

References:

Quality attributes
¢ - Code Example

e - Cause and Effect

1.1. Code related 55

https://github.com/testdouble/test-smells
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060
https://dl.acm.org/doi/10.1145/3472674.3473981

Test Smells Catalog, Release 2.0

* - Frequency

* - Refactoring

* A survey on test practitioners’ awareness of test smells

* An empirical analysis of the distribution of unit test smells and their impact on software maintenance
* An exploratory study of the relationship between software test smells and fault-proneness

* Are test smells really harmful? An empirical study

* Automatic generation of smell-free unit tests

» Categorising Test Smells

* Enhancing developers’ awareness on test suites’ quality with test smell summaries

* How are test smells treated in the wild? A tale of two empirical studies

* On the diffusion of test smells in automatically generated test code: an empirical study

* On the interplay between software testing and evolution and its effect on program comprehension
* Refactoring Test Code

* Scented since the beginning: On the diffuseness of test smells in automatically generated test code
 Test Smell Detection Tools: A Systematic Mapping Study

 TestQ: Exploring Structural and Maintenance Characteristics of Unit Test Suites

» xUnit test patterns: Refactoring test code

1.1.3.9 Hooks Everywhere

Definition:

¢ where the production code has awkward backdoors in it to allow test-time rewiring or intercepting
Also Known As:

* Testing Causes an Abstraction Virus

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

* - Refactoring

 Test Smells - The Coding Craftsman

56 Chapter 1. Contents

https://arxiv.org/abs/2003.05613
https://ieeexplore.ieee.org/document/6405253
https://ieeexplore.ieee.org/abstract/document/8847402/
https://link.springer.com/article/10.1007/s10664-014-9313-0
https://repositorio.ul.pt/handle/10451/56819
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://lutpub.lut.fi/handle/10024/158751
https://sol.sbc.org.br/journals/index.php/jserd/article/download/1802/1807/7485
https://dl.acm.org/doi/10.1145/2897010.2897016
https://link.springer.com/chapter/10.1007/978-3-540-76440-3_8
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.5499&rep=rep1&type=pdf
https://www.sciencedirect.com/science/article/pii/S0164121219301487?casa_token=UT0EMFzxTcQAAAAA:L9J82_15tdySkabcIMSHKPx8rVkrltOzcwgme5cIBWgT0txJENY5y-BdUmCYUoGHnoEjZJH-cYc
https://dl.acm.org/doi/10.1145/3463274.3463335
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.6409&rep=rep1&type=pdf
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.1.3.10 Indecent Exposure

Definition:

¢ Classes and methods should not expose their internals unless there’s a good reason to do so. In test automation
code bases, we explicitly separate our tests from our framework. It’s important to stay true to this by hiding
internal framework code from our test layer. It’s a code smell to expose class fields such as web elements used
in Page Object classes, or class methods that return web elements. Doing so enables test code to access these
DOM-specific items, which is not its responsibility.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* Writing good gherkin

1.1.3.11 Interface Sensitivity

Definition:

¢ Interface Sensitivity is when a test fails to compile or run because some part of the interface of the SUT that is
uses has changed.

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

 Categorising Test Smells

» xUnit test patterns: Refactoring test code

1.1.3.12 Mixing Production And Test Code

Definition:

* Unit testing code should not really be deployed to production environments. Therefore, when packaging the
code ready for release, the testing code must be somehow excluded, which can be complex depending upon the
naming conventions used

References:

Quality attributes

1.1. Code related 57

https://techbeacon.com/app-dev-testing/7-ways-tidy-your-test-code
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

 JUnit Anti-patterns

1.1.3.13 Multiple Points Of Failure

Definition:

* Adding assertions within your framework code is a code smell. It is not this code’s responsibility to determine
the fate of a test. By doing so, it limits the reusability of the framework code for both negative and positive
scenarios.

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

* Writing good gherkin

1.1.3.14 Overly Elaborate Test Code

Definition:
* When the test code duplicates the same logic as the code under test, logic which turns out to be incorrect.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Hacker News on: Software Testing Anti-patterns

58 Chapter 1. Contents

https://exubero.com/junit/anti-patterns/
https://techbeacon.com/app-dev-testing/7-ways-tidy-your-test-code
https://news.ycombinator.com/item?id=16895784

Test Smells Catalog, Release 2.0

1.1.3.15 Overspecification

Definition:

* Tests increasingly serve multiple roles in today’s projects. They help us design APIs through test-driven develop-
ment. They provide confidence that new changes aren’t breaking existing functionality. They offer an executable
specification of the application. But can we ever get to a point where we have too much testing?

Code Example:

require .dirname(__FILE__) + '/../test_helper'

class ProductsControllerTest <
def test_something

product = .create(:name => "Frisbee", :price => 5.00)
get :show, :id => product.id
assert_response :success
product = assigns(:product)
assert_not_nil product
assert product.valid?

assert product.name == "Frisbee"
assert product.price == 5.00
end
end
References:
Quality attributes

¢ - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* Testing anti-patterns: How to fail with 100% test coverage

1.1.3.16 Overspecified Software

Definition:

* The test focuses on the structure and the expected behaviour of the software rather than on what it should accom-
plish. Therefore, the software must be designed in a specific way in order that the test can pass.

Also Known As:
* Overcoupled Test

References:

Quality attributes
¢ - Code Example

¢ - Cause and Effect

1.1. Code related 59

https://jasonrudolph.com/blog/testing-anti-patterns-how-to-fail-with-100-test-coverage/

Test Smells Catalog, Release 2.0

* - Frequency

* - Refactoring

* Categorising Test Smells

 xUnit test patterns: Refactoring test code

1.1.3.17 Overspecified Tests

Definition:
* Tests that specify too many things that aren’t genuinely related to the scenario being tested.

Code Example:

@Mock private DataSource dataSource;

@Mock private Mock connection;

@Mock private Mock statement;

@Mock private ResultSet resultSet;

@Test

public void test() throws Exception {
MockitoAnnotations.initMocks(this);
systemUnderTest = new OracleDAOImpl();
systemUnderTest.setDBConnectionlanager (connectionManager) ;
Set<NACustomerDTO> set = new HashSet<NACustomerDTO>();
when(connectionManager.getDataSource()) .thenReturn(dataSource);
when(dataSource.getConnection()) .thenReturn(connection) ;
when(connection.createStatement()).thenReturn(statement);
when(statement.executeQuery(anyString())) .thenReturn(resultSet);
when(resultSet.next()).thenReturn(false);
when(resultSet.getLong(1)).thenReturn(lL);
when(resultSet.getString(2)).thenReturn("7178");
doNothing() .when(resultSet).close();
stub(systemUnderTest.getNACustomers()) .toReturn(set);
final Set<NACustomerDTO> result = systemUnderTest.getNACustomers();
verify(connectionManager) .getDataSource();
verify(dataSource).getConnection();
verify(connection).createStatement();
verify(statement).executeQuery(anyString());
verify(resultSet) .next();
verify(resultSet).getLong(l);
verify(resultSet).getString(2);
assertNotNull (result);
verify(connectionManager) .getDataSource().getConnection();

References:

Quality attributes
e - Code Example
¢ - Cause and Effect

* - Frequency

60 Chapter 1. Contents

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

e - Refactoring

* Bad tests, good tests

1.1.3.18 Plate Spinning

Definition:
* A test that is at risk of exiting prematurely because it does not properly wait for the results of external calls.

Code Example:

// Subject under test
function download (path, cb) {
get(path, function (er, value) {
if (er) return cb(er)
insert(value.id, value, function (er) {
cb(er)
b
b
}

// Test
module.exports = {
beforeEach: function (O {
post('/interests', {id: 42, interests: ['Ruby on Rails']}, function () {})
e
getsAndThenInserts: function (done) {
download('/interests', function (er) {
select (42, function (er, value) {
assert.deepEqual (value, {id: 42, interests: ['Ruby on Rails']})
done (er)
b
b
}
}

// Fake production implementations to simplify example test of subject
var _ = require('lodash')
var resources = {}
function post (path, value, cb) {
randomTimeout (function () {
resources[path] = value
cb(null)
}, 10, 30)
}

function get (path, cb) {
randomTimeout (function () {
cb(null, resources[path])
}, 15, 50)
}

(continues on next page)

1.1. Code related 61

http://kaczanowscy.pl/books/bad_tests_good_tests.html

Test Smells Catalog, Release 2.0

(continued from previous page)

var db = {}
function insert (id, value, cb) {
randomTimeout (function () {
db[id] = value
cb(null)
b
}

function select (id, cb) {
randomTimeout (function () {
cb(null, db[id])
i9)
}

function randomTimeout (func, low, high) {
setTimeout (func, _(low || 10).rangeChigh || 100).sample())
}

// Exclude this test from CI, since it's erratic
if (process.env.CI) module.exports = {}

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

* - Refactoring

* A workbook repository of example test smells and what to do about them

1.1.3.19 Production Logic In Test

Definition:
* Some forms of Conditional Test Logic are found in the result verification section of our tests.

Code Example:

public void testCombinationsOfInputValues() {
// Set up fixture
Calculator sut = new Calculator();

int expected; // TBD inside loops

for (int i = 0; 1 < 10; i++) {
for (int j = 0; j < 10; j++) {
// Exercise SUT
int actual = sut.calculate(i, j);

(continues on next page)

62 Chapter 1. Contents

https://github.com/testdouble/test-smells

Test Smells Catalog, Release 2.0

(continued from previous page)

// Verify result

if (i==3 & j==4) // special case
expected = 8;

else
expected = i+j;

assertEquals(message(i,j), expected, actual);
}
}
}

private String message(int i, int j) {
return "Cell(" + String.valueOf(i)+ ","
+ String.valueOf(j) + ")";

}

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

» xUnit test patterns: Refactoring test code

1.1.3.20 Test Dependency In Production

Definition:
 Production executables depend on test executables.

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

» xUnit test patterns: Refactoring test code

1.1. Code related 63

https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

1.1.3.21 Test Hook

Definition:
 Conditional logic within the SUT determines whether the “real” code or test-specific logic is run.

Code Example:

class ApplicationController < ActionController::Base
unless Rails.env.test?
before_filter :require_login
end
end

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Rails Testing Antipatterns

 xUnit test patterns: Refactoring test code

1.1.3.22 Test Logic In Production Code

Definition:
* The code that is put into production contains logic that should be exercised only during tests.

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Automatic generation of smell-free unit tests
* Enhancing developers’ awareness on test suites’ quality with test smell summaries
* Inspecting Automated Test Code: A Preliminary Study

» xUnit test patterns: Refactoring test code

64 Chapter 1. Contents

https://thoughtbot.com/upcase/videos/testing-antipatterns
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://repositorio.ul.pt/handle/10451/56819
https://lutpub.lut.fi/handle/10024/158751
https://dl.acm.org/doi/abs/10.5555/1768961.1768982
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

1.1.3.23 Test Tautology

Definition:

* Generally speaking one does not want to duplicate the logic between tests and code. So replicating a regexp or
something else in the test is not an option.

Code Example:
.assertThat (processTemplate('paraml”, "param2")).isEqualTo(String.format("this.
—is "%s', and this is '%s'", paraml, param2));
References:
Quality attributes

¢ - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* How to write good tests

1.1.3.24 Tests Cluttered With Business Logic

Definition:
* Tests that mix details of system business logic with steps of test scenario are hard to read and maintain.

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

e Anti-patterns in test automation

1.1.3.25 Tests Require Too Much Intimate Knowledge Of The Code To Run

Definition:

* Tests only need to know about the methods they are testing, and even then only the interface or what is going in
and coming out of them not specific implementation details. This particular anti-pattern or set of them comes
from attempts to get 100% code coverage.

References:

Quality attributes

1.1. Code related 65

https://github.com/mockito/mockito/wiki/How-to-write-good-tests
https://www.codementor.io/@mgawinecki/anti-patterns-in-test-automation-101c6vm5jz

Test Smells Catalog, Release 2.0

¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Anti-Patterns In Unit Testing

1.1.3.26 The Telltale Heart

Definition:

» where the production code is repeatedly calculating and returning values that are only used at test time.

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

e - Refactoring

Test Smells - The Coding Craftsman

1.1.3.27 The Ugly Mirror

Definition:

* When you occasionally find yourself staring at a spec that looks exactly like the code under test, there’s surpris-

ingly little win left to enjoy.
Also Known As:
e Tautological tests

Code Example:

require "test/unit"

= .new(:first_name, :last_name, :email) do
def to_s
"#{last_name}, #{first_name} <#{email }>"
end
end

class UserTest < o
def test_to_s_includes_name_and_email

user = .new("John", "Smith", "jsmith@example.com")
assert_equal "#{user.last_name}, #{user.first_name} <#{user.email >", user.to_s
end
end
66 Chapter 1. Contents

https://completedeveloperpodcast.com/anti-patterns-in-unit-testing/
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

* - Refactoring

* Anti-Patterns - Digital Tapestry

* Java: code duplication in classes and their junit test cases

* Smells in software test code: A survey of knowledge in industry and academia
* Testing anti-patterns: How to fail with 100% test coverage

e Testing anti-patterns: The ugly mirror

1.1.3.28 Trying To Test The Untestable

Definition:

* When you try to write tests for complex business functionality without refactoring the source.
Code Example:

* No code examples yet...

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Testing the Untestable and Other Anti-Patterns

1.1.3.29 Ui Tests Should Not Expose Interactions With Web Elements

Definition:

* The benefit of using Page Objects is that they abstract implementation logic from the tests. The tests can be
focused on the scenarios and not implementation. The idea is that the scenario doesn’t change, but the imple-
mentation does.

Code Example:

* No code examples yet...

1.1. Code related 67

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://stackoverflow.com/questions/10781050/java-code-duplication-in-classes-and-their-junit-test-cases
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060
https://jasonrudolph.com/blog/testing-anti-patterns-how-to-fail-with-100-test-coverage/
https://jasonrudolph.com/blog/2008/07/30/testing-anti-patterns-the-ugly-mirror/
https://dzone.com/articles/testing-the-untestable-and-other-anti-patterns

Test Smells Catalog, Release 2.0

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Top 17 Automated Testing Best Practices (Supported By Data)

1.1.3.30 Well, My Setup Works

Definition:

a test does not share enough of the setup code used in production, so the test setup can deviate from the production
code meaningfully, or at best duplicates production code unnecessarily

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Test Smells - The Coding Craftsman

1.1.4 Mock and stub related

1.1.4.1 Excessive Mocking

Definition:

Refers to a test case which requires many mocks to run [35, 45]. The system under test may need a complex
environment, specific resources, or depend on 3rd party systems which cannot be provided during test execution.
Running tests against a database is a canonical example. If the database isn’t available, all tests will fail even
though the system under test might be completely bug-free. A common solution is to mock those potential
failures by mimicking the behavior of real objects. Developers also use mocks when testing authentication, but
sometimes struggle with strategy.

References:

Quality attributes

- Code Example
- Cause and Effect

- Frequency

68

Chapter 1. Contents

https://ultimateqa.com/automation-patterns-antipatterns/
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

e - Refactoring

¢ Did You Remember To Test Your Tokens?

¢ Unit Testing Smells: What Are Your Tests Telling You?

1.1.4.2 Is Mockito Working Fine?

Definition:
¢ When the mock framerwork is tested intead of the SUT

Code Example:

@Test
public void testFormUpdate() {
// given
Form f = Mockito.mock(Form.class);
Mockito.when(f.isUpdateAllowed()).thenReturn(true);
// when
boolean result = f.isUpdateAllowed();
// then
assertTrue(result);

}

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

e - Refactoring

* Bad tests, good tests

1.1.4.3 Making A Mockery Of Design

Definition:

» where pure functions have to be dependency injected so they can be mocked.

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

1.1. Code related

69

https://dl.acm.org/doi/10.1145/3379597.3387471
https://dzone.com/articles/unit-testing-smells-what-are-your-tests-telling-yo
http://kaczanowscy.pl/books/bad_tests_good_tests.html

Test Smells Catalog, Release 2.0

* Test Smells - The Coding Craftsman

1.1.4.4 Mismatched Stubs

Definition:

* Stubbed methods called with arguments that differ from those specified for the stub
Code Example:

* No code examples yet...

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

» Use of test doubles in Android testing: an in-depth investigation

1.1.4.5 Mock Everything

Definition:
« If everything is mocked, are we really testing the production code? Don’t hesitate to not mock!

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* How to write good tests

1.1.4.6 Mock Happy

Definition:

* If one uses too many mock objects that interact with each other, the test will only test the interaction between
them instead of the functionality of the production code.

Also Known As:

* The Mockery

70 Chapter 1. Contents

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://dl.acm.org/doi/10.1145/3510003.3510175
https://github.com/mockito/mockito/wiki/How-to-write-good-tests

Test Smells Catalog, Release 2.0

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

* - Refactoring

 Categorising Test Smells
* Smells in software test code: A survey of knowledge in industry and academia

* Smells of Testing (signs your tests are bad)

1.1.4.7 Mock Madness

Definition:
* where even near-primitive values like POJOs are being mocked, just because.

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Test Smells - The Coding Craftsman

1.1.4.8 Mock’Em All

Definition:
* When a test overuse all kinds of test double, even when it is not really the best option

Code Example:

@Test
public void shouldAddTimeZoneToModelAndView() {
//given
Context context = mock(Context.class);
ModelAndView modelAndView = mock (ModelAndView.class);
given(context.getTimezone()).willReturn("timezone X");
//when
new UserDatalnterceptor(context)
.postHandle(null, null, null, modelAndView);
//then

(continues on next page)

1.1. Code related

71

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060
https://jakescruggs.blogspot.com/2009/04/smells-of-testing-signs-your-tests-are.html
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

(continued from previous page)

verify(modelAndView) .addObject("timezone", "timezone X");

¥

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Bad tests, good tests

1.1.4.9 Mockers Without Borders

Definition:

* Tests demonstrate little rhyme or reason for whether a given test ought to fake a particular dependency or call
through to the real thing.

Code Example:

Subject under test
class App
def pay_merchants(start_date, end_date)
transactions = fetch(start_date, end_date)
purchase_orders = create_purchase_orders(group_by_merchant(transactions))
submit (purchase_orders)
end
end

Test
class MockersWithoutBorders <
def setup
@subject = .new
super
end

def test_pays_merchants_with_totals
transactions = [
{ merchant: 'Nike', desc: 'Shoes', amount: 119.20 },
{ merchant: 'Nike', desc: 'Waterproof spray', amount: 10.10 },
{ merchant: 'Apple', desc: 'iPad', amount: 799.99 },
{ merchant: 'Apple', desc: 'iPad Cover', amount: 59.99 }

]
start_date = .civil(2015, 1, 1)
end_date = .civil (2015, 12, 31)

stub(@subject, :fetch, transactions, [start_date, end_date])
verify(@subject, :submit, [
(continues on next page)

72 Chapter 1. Contents

http://kaczanowscy.pl/books/bad_tests_good_tests.html

Test Smells Catalog, Release 2.0

(continued from previous page)
{ merchant: 'Nike', total: 129.30 },
{ merchant: 'Apple', total: 859.98 }
D

@subject.pay_merchants(start_date, end_date)
end
end

Fake production implementations to simplify example test of subject
class App
def fetch(start_date, end_date)
Imagine something that hits a data store here
end

def group_by_merchant(transactions)
transactions.group_by { |[t| t[:merchant] }
end

def create_purchase_orders(transactions_by_merchant)
transactions_by_merchant.map { | (merchant, transactions) |
{
merchant: merchant,
total: transactions.map {|h| h[:amount] }.reduce(:+)
}
}

end

def submit(purchase_orders)
Imagine something that hits a payment processor here
end
end

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* A workbook repository of example test smells and what to do about them

1.1. Code related 73

https://github.com/testdouble/test-smells

Test Smells Catalog, Release 2.0

1.1.4.10 Mocking A Mocking Framework

Definition:
¢ Occurrs when the test case tests the applied mocking framework

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

¢ Did You Remember To Test Your Tokens?

1.1.4.11 Mocking What You Don’T Own

Definition:

* When mocking an external API the test cannot be used to drive the design, the API belongs to someone else ;
this third party can and will change the signature and behaviour of the API.

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Anti-patterns of automated testing

* How to write good tests

1.1.4.12 Mockito Any() Vs. Isa()

Definition:
* Misuse of mockito’s matchers classes to type checks

Code Example:

verify(async).execute(any(AddOrganizationAction.class),
any (AsyncCallback.class));

// wrong pass
verify(async).execute(any(AddPersonToOrganizationAction.class),
any (AsyncCallback.class));

74 Chapter 1. Contents

https://dl.acm.org/doi/10.1145/3379597.3387471
https://medium.com/swlh/anti-patterns-of-automated-software-testing-b396283a4cb6
https://github.com/mockito/mockito/wiki/How-to-write-good-tests

Test Smells Catalog, Release 2.0

verify(async) .execute(isA(AddOrganizationAction.class),
any (AsyncCallback.class));

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Bad tests, good tests

1.1.4.13 Overmocking

Definition:

» where tests are testing situations that are guaranteed to pass as they’re whitebox tested against perfect mocks that
do not indicate anything to do with reality.

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Test Smells - The Coding Craftsman

1.1.4.14 Overuse Mocking

Definition:

* The problem is using too many mocks. Although mocks are inevitable in cases, you should be aware of the dark
side of mocking. It could cause a false negative case, and the defect can only be found when it’s too late.

Code Example:
* No code examples yet...

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect

* - Frequency

1.1. Code related 75

http://kaczanowscy.pl/books/bad_tests_good_tests.html
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

e - Refactoring

* Unveiling 6 Anti-Patterns in React Test Code: Pitfalls to Avoid

1.1.4.15 Remote Control Mocking

Definition:

» where a class that depends on a service is tested with those service’s complex dependencies mocked, rather than
the service itself being mocked.

Code Example:

// pseudocode

given: mock connection factory will return a mock connection
given: mock connection, when queried will return a test collection
given: repository with mock connection factory

given: controller with repository

when: controller handles a get request

then: the result will be the test collection as json

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

¢ - Refactoring

e Test Smells - The Coding Craftsman

1.1.4.16 Subclass To Test

Definition:
¢ Need to fake, mock or stub methods in a ClassUnderTest, and/or classes it uses.

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

¢ Subclass To Test Anti Pattern

76 Chapter 1. Contents

https://itnext.io/unveiling-6-anti-patterns-in-react-test-code-pitfalls-to-avoid-fd7e5a3a7360
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://wiki.c2.com/?SubclassToTestAntiPattern

Test Smells Catalog, Release 2.0

1.1.4.17 Surreal

Definition:
* A test whose use of test doubles is so confusing, it’s hard to tell what the test is even doing at run-time.

Code Example:

Subject under test
def weigh_clothes(clothes)

clothes.map { |item| item.weight }.reduce(:+).round
end

Test
class Surreal <
def setup
stub (, :size, 9, ["S"D
super
end

def test_adds_weights

small_wet_sock = .new("S", "sock", "wet")
large_dry_jacket = .new("L", "jacket", "dry")
stub(large_dry_jacket, :weight, 8)

x1_soaked_pants = .new(weight: 15)

result = weigh_clothes([small_wet_sock, large_dry_jacket, xl_soaked_pants])

assert_equal 26, result
end
end

Fake production implementations to simplify example test of subject
class Clothing
def initialize(size, type, wetness)
@size = size

@type = type
@wetness = wetness
end
def weight
return 1 *
.size(@size) *
-type(@type) *
.wetness (@wetness)
end
end

class Factors
def size(size)
case size
when "S" then 0.75
when "M" then 1
when "L" then 1.25

(continues on next page)

1.1. Code related 77

Test Smells Catalog, Release 2.0

(continued from previous page)

when "XL" then 1.5
else 1
end

end

def type(type)
case type
when "sock" then 0.2
when "shirt" then 1
when "pants" then 2
when "jacket" then 3
else 1
end

end

def wetness(wetness)
case wetness
when "dry" then 1
when "moist" then 1.1
when "wet" then 1.6
when "soaked" then 2.5
else 1
end
end
end
FACTORS = Factors.new

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* A workbook repository of example test smells and what to do about them

1.1.4.18 Testing The Framework

Definition:

* If you’re using a framework you pretty much have to assume it works. Testing it along with your other tests only
clutters things up.

References:

Quality attributes
* - Code Example

78 Chapter 1. Contents

https://github.com/testdouble/test-smells

Test Smells Catalog, Release 2.0

e - Cause and Effect
* - Frequency

- Refactoring

* Smells of Testing (signs your tests are bad)

1.1.4.19 The Dead Tree

Definition:

* A test which where a stub was created, but the test wasn’t actually written.
Also Known As:

* Process Compliance Backdoor

Code Example:

class TD_SomeClass {
public void testAdd() {
assertEquals(1+1, 2);
}
}

References:

Quality attributes
e - Code Example
- Cause and Effect
* - Frequency

e - Refactoring

* Categorising Test Smells

¢ Unit testing Anti-patterns catalogue

1.1.4.20 The Mockery

Definition:

* Sometimes mocking can be good, and handy. But sometimes developers can lose themselves and in their effort
to mock out what isn’t being tested. In this case, a unit test contains so many mocks, stubs, and/or fakes that the
system under test isn’t even being tested at all, instead data returned from mocks is what is being tested.

Also Known As:
* Mock Happy, Mock-Overkill

References:

Quality attributes
* - Code Example

1.1. Code related 79

https://jakescruggs.blogspot.com/2009/04/smells-of-testing-signs-your-tests-are.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue

Test Smells Catalog, Release 2.0

e - Cause and Effect
* - Frequency

* - Refactoring

* Anti-Patterns - Digital Tapestry
e Test-Driven Development: TDD Anti-Patterns
e Unit Testing Anti-Patterns, Full List

* Unit testing Anti-patterns catalogue

1.1.4.21 Unnecessary Stubs

Definition:
 Stubbed method never called during test execution

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

e Use of test doubles in Android testing: an in-depth investigation

1.1.5 Violating coding best practices
1.1.5.1 Accidental Test Framework

Definition:

* related to over exertion asserts, where there’s an ad-hoc bit of what should be a test library, this also includes
home-made shallow implementations for deep problems like managing resources such as database or file. It also
includes manually pumping framework primitives, rather than using the framework as a whole.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Test Smells - The Coding Craftsman

80 Chapter 1. Contents

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://dl.acm.org/doi/10.1145/3510003.3510175
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.1.5.2 Ambiguous Tests

Definition:
* The test is underspecified and leaves room for interpretation

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Hunting for smells in natural language tests

1.1.5.3 Anonymous Test Case

Definition:
* where we cannot tell from the test name what is being tested

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

e Test Smells - The Coding Craftsman

1.1.5.4 Anonymous Test

Definition:

* An anonymous test is a test whose name is meaningless as it doesn’t express the purpose of the test in the current
context. However tests can be regarded as documentation, and the name is an important part of that as it should
abstract what the test is all about.

Also Known As:
* Unclear Naming, Naming Convention Violation

Code Example:

@Test
public void testl() {
// test user login
(continues on next page)

1.1. Code related 81

https://ieeexplore.ieee.org/abstract/document/6606682
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

(continued from previous page)

LoginPage.login("user", "password");

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Assessing test quality - TestLint

* Automatic generation of smell-free unit tests

* Categorising Test Smells

* Detection of test smells with basic language analysis methods and its evaluation

* Generated Tests in the Context of Maintenance Tasks: A Series of Empirical Studies
* Rule-based Assessment of Test Quality

e Test Smell Detection Tools: A Systematic Mapping Study

* Test Smells - The Coding Craftsman

1.1.5.5 Bad Documentation Comment

Definition:

¢ A documentation comment does not conform to its format. Documentation comments like T3Doc need to con-
form to certain formatting rules and appear at certain positions in the source code.

Code Example:

Vi

* This function does something.

* @param imParam a very important parameter

:'.‘/

function exampleFunction(integer inParam) {
/) ...

}

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

82 Chapter 1. Contents

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.9594
https://repositorio.ul.pt/handle/10451/56819
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/10123551/
https://ieeexplore.ieee.org/document/9954000/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.5.6 Bad Naming

Definition:

* When a test fails, or when the test base requires maintenance, the test names are the first thing developers will
generally attempt to understand before they apply changes to the test or the code being tested. If test names are
poor quality, developers will need to spend time reading the code and determining how the test’s actual behavior
is related to its name

Code Example:

function calculateSomething() {
// ...
}

function calculateSomethingElse() {
// ...
}

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* An approach to quality engineering of TTCN-3 test specifications

* Improving Student Testing Practices through a Lightweight Checklist Intervention.
* Pattern-based Smell Detection in TTCN-3 Test Suites

e Test Naming Failures. An Exploratory Study of Bad Naming Practices in Test Code
* Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

* What We Know About Smells in Software Test Code

1.1. Code related 83

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16
https://link.springer.com/article/10.1007/s10009-008-0075-0
https://repository.lib.ncsu.edu/bitstream/handle/1840.20/39743/etd.pdf?sequence=1
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://scholarworks.rit.edu/theses/11053/
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16
https://ieeexplore.ieee.org/document/8501942

Test Smells Catalog, Release 2.0

1.1.5.7 Badly Structured Test Suite

Definition:
* The structure of the test suite does not follow the structure of the tested functionality

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Hunting for smells in natural language tests

1.1.5.8 Blethery Prefixes

Definition:
* Where the implementation of a single line of test code is prefixed by a lot of characters before we get to the point

Code Example:

@Test

void someTest() {
Mockito.when(someMock.get())
.thenReturn(123);

}

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Test Smells - The Coding Craftsman

84 Chapter 1. Contents

https://ieeexplore.ieee.org/abstract/document/6606682
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.1.5.9 Comments Only Test

Definition:
* A test that has been put into comments

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Rule-based Assessment of Test Quality

Test Smell Detection Tools: A Systematic Mapping Study

1.1.5.10 Constant Actual Parameter Value

Definition:

* The value of an actual parameter is the same for all occurances. In contrast to Unused Parameter (4.3.1), the
parameter is in use within the declaring entity and must not simply be removed. The declaring entity could be a
template or a behavioral entity (function, test case or altstep).

Code Example:

template myType t (charstring pl, integer p2) := {
fieldl := true,
field2 := p2,
field3 := pl

}

function £() runs on myComponent {

// ...
p.send(templateA("foo", 42));

// ...
p.send(templateA("foo", 42));

// ...
p-send(templateA("foo", 43));

}

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

1.1. Code related 85

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.5.11 Dead Field

Definition:

* Occurs when a class or its super classes have fields that are never used by any test method. Often dead fields
are inherited. This can indicate a non-optimal inheritance structure, or that the super class conflicts with the
single responsibility principle. Also, dead fields within the test class itself can indicate incomplete or deprecated
development activities.

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Automated Detection of Test Fixture Strategies and Smells
* Automatic generation of smell-free unit tests

* Strategies for avoiding text fixture smells during software evolution

Test Smell Detection Tools: A Systematic Mapping Study

1.1.5.12 Default Test

Definition:

* By default Android Studio creates default test classes when a project is created. These template test classes are
meant to serve as an example for developers when writing unit tests and should either be removed or renamed.
Having such files in the project will cause developers to start adding test methods into these files, making the
default test class a container of all test cases and violate good testing practices. Problems would also arise when
the classes need to be renamed in the future.

Code Example:

public class ExampleUnitTest {
@Test
public void addition_isCorrect() throws Exception {
assertEquals(4, 2 + 2);
}

@Test
public void shareProblem() throws InterruptedException {

(continues on next page)

86 Chapter 1. Contents

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16
https://ieeexplore.ieee.org/document/6569744
https://repositorio.ul.pt/handle/10451/56819
https://ieeexplore.ieee.org/document/6624053
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

(continued from previous page)

Observable. just(200)
.subscribeOn(Schedulers.newThread())
.subscribe(begin.asAction());
begin.set(200);

Thread.sleep(1000);
assertEquals(beginTime.get(), "200");

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

An Exploratory Study on the Refactoring of Unit Test Files in Android Applications
Automatic Identification of High-Impact Bug Report by Product and Test Code Quality
Automatic generation of smell-free unit tests

Handling Test Smells in Python: Results from a Mixed-Method Study

On the distribution of test smells in open source Android applications: an exploratory study
On the influence of Test Smells on Test Coverage

On the test smells detection: an empirical study on the jnose test accuracy

On the use of test smells for prediction of flaky tests

PyNose: A Test Smell Detector For Python

Software Unit Test Smells

Test Smell Detection Tools: A Systematic Mapping Study

What the Smell? An Empirical Investigation on the Distribution and Severity of Test Smells in Open Source
Android Applications

tsDetect: an open source test smells detection tool

1.1. Code related 87

https://dl.acm.org/doi/10.1145/3387940.3392189
https://huang.zj.cn/pdf/J13.pdf
https://repositorio.ul.pt/handle/10451/56819
https://dl.acm.org/doi/10.1145/3474624.3477066
https://dl.acm.org/doi/10.5555/3370272.3370293
https://dl.acm.org/doi/10.1145/3350768.3350775
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://dl.acm.org/doi/abs/10.1145/3482909.3482916
https://ieeexplore.ieee.org/document/9678615/
https://testsmells.org/
https://dl.acm.org/doi/10.1145/3463274.3463335
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://dl.acm.org/doi/10.1145/3368089.3417921

Test Smells Catalog, Release 2.0

1.1.5.13 Directly Executing Javascript

Definition:

» Since WebDriver can directly execute any arbitrary JavaScript, it can be tempting to bypass DOM manipulation
and just run the JavaScript.

Code Example:

public void RemoveTea(string teaType)
{
(driver as IJavaScriptExecutor).ExecuteScript(string.Format("viewModel.tea.types.
—removeTeaType (\" {0}\") ;", teaType));
}

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

» Five automated acceptance test anti-patterns

1.1.5.14 Disabled Test

Definition:

* Disabling failing tests temporarily can be seen as an added flexibility for developers to alleviate maintenance
difficulties, but it may introduce technical debt.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* How disabled tests manifest in test maintainability challenges?

88 Chapter 1. Contents

https://alisterbscott.com/2015/01/20/five-automated-acceptance-test-anti-patterns/
https://dl.acm.org/doi/10.1145/3468264.3468609

Test Smells Catalog, Release 2.0

1.1.5.15 Empty Method Category

Definition:
¢ A test method with an empty method category

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Rule-based Assessment of Test Quality

Test Smell Detection Tools: A Systematic Mapping Study

1.1.5.16 Empty Test-Method Category

Definition:
* A test method with an empty test method category

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Rule-based Assessment of Test Quality

* Test Smell Detection Tools: A Systematic Mapping Study

1.1.5.17 Empty Test

Definition:

¢ Occurs when a test method has no executable statements. Such methods are possibly created for debugging pur-
poses without being deleted or contain commented-out test statements. An empty test method can be considered
problematic and more dangerous than not having a test case at all since JUnit will indicate that the test passes
even if there are no executable statements present in the method body. As such, developers introducing behavior-
breaking changes into production class, will not be notified of the alternated outcomes as JUnit will report the

test as passing.

Code Example:

1.1. Code related

89

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

public void testCredGetFullSampleV1() throws Throwable{

// ScrapedCredentials credentials = innerCredTest(FULL_SAMPLE_v1);
// assertEquals("p4sswOrd", credentials.pass);

// assertEquals("user@example.com",credentials.user);

}

References:

Quality attributes

¢ - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* A survey on test practitioners’ awareness of test smells

* An Exploratory Study on the Refactoring of Unit Test Files in Android Applications

* Automatic Identification of High-Impact Bug Report by Product and Test Code Quality
» Automatic generation of smell-free unit tests

* Developers perception on the severity of test smells: an empirical study

* Handling Test Smells in Python: Results from a Mixed-Method Study

* How are test smells treated in the wild? A tale of two empirical studies

* Investigating Severity Thresholds for Test Smells

* Investigating Test Smells in JavaScript Test Code

* Machine Learning-Based Test Smell Detection

* On the Distribution of “Simple Stupid Bugs” in Unit Test Files: An Exploratory Study

* On the diffusion of test smells and their relationship with test code quality of Java projects
* On the distribution of test smells in open source Android applications: an exploratory study
* On the influence of Test Smells on Test Coverage

* On the test smells detection: an empirical study on the jnose test accuracy

* On the use of test smells for prediction of flaky tests

* PyNose: A Test Smell Detector For Python

* Software Unit Test Smells

* Test Smell Detection Tools: A Systematic Mapping Study

 TestQ: Exploring Structural and Maintenance Characteristics of Unit Test Suites

* The secret life of test smells-an empirical study on test smell evolution and maintenance
 Understanding Testability and Test Smells

e What the Smell? An Empirical Investigation on the Distribution and Severity of Test Smells in Open Source
Android Applications

¢ tsDetect: an open source test smells detection tool

90

Chapter 1. Contents

https://arxiv.org/abs/2003.05613
https://dl.acm.org/doi/10.1145/3387940.3392189
https://huang.zj.cn/pdf/J13.pdf
https://repositorio.ul.pt/handle/10451/56819
https://arxiv.org/abs/2107.13902
https://dl.acm.org/doi/10.1145/3474624.3477066
https://sol.sbc.org.br/journals/index.php/jserd/article/download/1802/1807/7485
https://dl.acm.org/doi/abs/10.1145/3379597.3387453
https://dl.acm.org/doi/10.1145/3482909.3482915
https://arxiv.org/abs/2208.07574
https://ieeexplore.ieee.org/document/9463091
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://dl.acm.org/doi/10.5555/3370272.3370293
https://dl.acm.org/doi/10.1145/3350768.3350775
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://dl.acm.org/doi/abs/10.1145/3482909.3482916
https://ieeexplore.ieee.org/document/9678615/
https://testsmells.org/
https://dl.acm.org/doi/10.1145/3463274.3463335
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.6409&rep=rep1&type=pdf
https://link.springer.com/article/10.1007/s10664-021-09969-1
https://www.designite-tools.com/blog/understanding-testability-test-smells
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://dl.acm.org/doi/10.1145/3368089.3417921

Test Smells Catalog, Release 2.0

1.1.5.18 Erratic Test

Definition:
* One or more tests are behaving erratically; sometimes they pass and sometimes they fail.

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Automatic generation of smell-free unit tests
* Inspecting Automated Test Code: A Preliminary Study
* Rails Testing Antipatterns

 xUnit test patterns: Refactoring test code

1.1.5.19 Erratic Tests

Definition:
¢ Tests that will pass or fail without you changing anything

Code Example:

first(".active").click
all(".active").each(&:click)
execute_script("$('.active').focus()")
expect(find_field("Username").value).to eq("Joe™)
expect(find(".user") ["data-name"]).to eq("Joe™)

expect(has_css?(".active™)).to eq(false)

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

* Rails Testing Antipatterns

1.1. Code related 91

https://repositorio.ul.pt/handle/10451/56819
https://dl.acm.org/doi/abs/10.5555/1768961.1768982
https://thoughtbot.com/upcase/videos/testing-antipatterns
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://thoughtbot.com/upcase/videos/testing-antipatterns

Test Smells Catalog, Release 2.0

1.1.5.20 Everything Is A Property

Definition:

* Where a test class keeps what should be temporary variables in instance variables
Also Known As:

» Temporary Test Property
Code Example:

class ParagraphAnalyzerTest {
private String analyzed;
private ParagraphAnalyzer analyzer = new ParagraphAnalyzer();

@Test

void nouns() {
analyzed = analyzer.justNouns("This is a word");
assertThat(analyzed) .isEqualTo("word");

}

@Test

void verbs() {
analyzed = analyzer. justVerbs("This is a word");
assertThat(analyzed).isEqualTo("is");

}

@Test

void ends() {
analyzed = analyzer.first("This is a word");
assertThat(analyzed).isEqualTo("This");

analyzed = analyzer.last("This is a word");
assertThat(analyzed) .isEqualTo("words");

}
}
References:
Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency
- Refactoring
* Test Smells - The Coding Craftsman
92 Chapter 1. Contents

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.1.5.21 Flaky Locator

Definition:

¢ A key component to making UI automation work is to provide your tool with identifiers to the elements that
you’d like it to find and interact with. Using flaky locators—ones that are not durable—is an awful code smell.

Code Example:

[/html/body/div/div/div/div/div [2]/label/span[2]

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Writing good gherkin

1.1.5.22 Flaky Test

Definition:

» A flaky test is a test that could fail or pass for the same configuration. Flaky tests could be harmful for developers
because their failures do not always indicate bugs in the code.

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* JTDog: a Gradle Plugin for Dynamic Test Smell Detection

* Revisiting Test Impact Analysis in Continuous Testing From the Perspective of Code Dependencies
* Static Test Flakiness Prediction

« Static Test Flakiness Prediction

* Static test flakiness prediction: How Far Can We Go?

 Surveying the developer experience of flaky tests

¢ What We Know About Smells in Software Test Code

1.1. Code related 93

https://techbeacon.com/app-dev-testing/7-ways-tidy-your-test-code
https://ieeexplore.ieee.org/document/9678529/
https://ieeexplore.ieee.org/document/9303402/
https://ieeexplore.ieee.org/document/9793797/
https://valeriapontillo.github.io/documents/journal/J1.pdf
https://link.springer.com/article/10.1007/s10664-022-10227-1
https://dl.acm.org/doi/10.1145/3510457.3513037
https://ieeexplore.ieee.org/document/8501942

Test Smells Catalog, Release 2.0

1.1.5.23 Fully-Parameterized Template

Definition:
¢ All fields of a template are defined by formal parameters.

Code Example:

type record MyMessageType {
integer fieldl,
charstring field2,
boolean field3

}

template MyMessageType exampleTemplate(integer i, charstring c, boolean b) := {
fieldl := i,
field2 := c,
field3 := b

}

function £() runs on MyComponent {
// ...
p.send(exampleTemplate(42, "dent", true));
// ...

}

References:

Quality attributes

* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.5.24 Goto Statement

Definition:

* A goto statement is used. The use of goto statements is inadvisable and should be avoided.

Code Example:

function f (integer i) runs on ExampleComponent {
var integer MyVar := i ;
label L1 ;

MyVar := 2 MyVar ;
if (MyVar < 2000) {

(continues on next page)

94 Chapter 1. Contents

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

(continued from previous page)

goto L1 ;

}

MyVar2 := f2(MyVar);

if (MyVar2 > MyVar) {
goto L2 ;

}

p-send(MyVar) ;

p.receive -> value MyVar2;

label L2 ;

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites
« Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.5.25 Having Flaky Or Slow Tests

Definition:

* A test that sometimes fails and sometimes passes (without any code changes in between) is unreliable and un-
dermines the whole testing suite

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Software Testing Anti-patterns

1.1. Code related 95

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16
http://blog.codepipes.com/testing/software-testing-antipatterns.html

Test Smells Catalog, Release 2.0

1.1.5.26 Hidden Meaning

Definition:

e Where something that should be part of the execution of the test, and appear in a test report, is hidden in a
comment — essentially comment instead of name

Code Example:

@Test
public void restApi() {
int response = client.get("/endpoint");

// the status code returned from the get
// should be OK, indicating

// the endpoint is healthy

assertEquals (200, response);

References:

Quality attributes
* - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

Test Smells - The Coding Craftsman

1.1.5.27 Hidden Test Call

Definition:
e Tests calling other tests

Code Example:

[TestFixture]
public class HiddenTestCall {
private LogAnalyzer logan;

[Test]

public void CreateAnalyzer_GoodNameAndBadNameUsage() {
logan.new LogAnalyzer();
logan.Initialize();
bool valid = logan.IsValid("abc");
Assert.That(valid, Is.False);
CreateAnalyzer_GoodFileName_ReturnsTrue();

}

[Test]
public void CreateAnalyzer_GoodFileName_ReturnsTrue() {
(continues on next page)

96 Chapter 1. Contents

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

(continued from previous page)
bool valid = logan.IsValid("abcdefg™);
Assert.That(valid. Is.True);
}
}

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

* - Refactoring

* Chapter 8. The pillars of good unit tests

1.1.5.28 Ignored Test

Definition:

* JUnit 4 provides developers with the ability to suppress test methods from running. However, these ignored test
methods result in overhead since they add unnecessary overhead with regards to compilation time, and increases
code complexity and comprehension.

Code Example:

@Ignore("disabled for now as this test is too flaky")
public void peerPriority() throws Exception {
final List addresses = Lists.newArrayList(
new InetSocketAddress('localhost", 2000),
new InetSocketAddress("localhost"”, 2001),
new InetSocketAddress("localhost", 2002)
N
peerGroup.addConnectedEventListener(connectedListener) ;

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

e A preliminary evaluation on the relationship among architectural and test smells

* An Exploratory Study on the Refactoring of Unit Test Files in Android Applications

1.1. Code related 97

https://apprize.best/c/unit/8.html
https://ieeexplore.ieee.org/document/10006864/
https://dl.acm.org/doi/10.1145/3387940.3392189

Test Smells Catalog, Release 2.0

» Automatic Identification of High-Impact Bug Report by Product and Test Code Quality

* Automatic generation of smell-free unit tests

* Handling Test Smells in Python: Results from a Mixed-Method Study

* Investigating Severity Thresholds for Test Smells

* Investigating Test Smells in JavaScript Test Code

* On the Distribution of “Simple Stupid Bugs” in Unit Test Files: An Exploratory Study

* On the diffusion of test smells and their relationship with test code quality of Java projects
* On the distribution of test smells in open source Android applications: an exploratory study
* On the influence of Test Smells on Test Coverage

* On the test smells detection: an empirical study on the jnose test accuracy

* On the use of test smells for prediction of flaky tests

* PyNose: A Test Smell Detector For Python

* Pytest-Smell: a smell detection tool for Python unit tests

* Software Unit Test Smells

* Test Smell Detection Tools: A Systematic Mapping Study

» The secret life of test smells-an empirical study on test smell evolution and maintenance

* Understanding Testability and Test Smells

e What the Smell? An Empirical Investigation on the Distribution and Severity of Test Smells in Open Source
Android Applications

¢ tsDetect: an open source test smells detection tool

1.1.5.29 Improper Test Method Location

Definition:

* Smalltalk-developers normally organize their source-code in packages, classcategories and method-categories.
Although there is no common convention for doing so, most projects we encountered during our case study are
organized in a very similar fashion. However we also noticed that tests are sometimes excluded from that.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* Assessing test quality - TestLint

98 Chapter 1. Contents

https://huang.zj.cn/pdf/J13.pdf
https://repositorio.ul.pt/handle/10451/56819
https://dl.acm.org/doi/10.1145/3474624.3477066
https://dl.acm.org/doi/abs/10.1145/3379597.3387453
https://dl.acm.org/doi/10.1145/3482909.3482915
https://ieeexplore.ieee.org/document/9463091
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://dl.acm.org/doi/10.5555/3370272.3370293
https://dl.acm.org/doi/10.1145/3350768.3350775
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://dl.acm.org/doi/abs/10.1145/3482909.3482916
https://ieeexplore.ieee.org/document/9678615/
https://dl.acm.org/doi/10.1145/3533767.3543290
https://testsmells.org/
https://dl.acm.org/doi/10.1145/3463274.3463335
https://link.springer.com/article/10.1007/s10664-021-09969-1
https://www.designite-tools.com/blog/understanding-testability-test-smells
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://dl.acm.org/doi/10.1145/3368089.3417921
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.9594

Test Smells Catalog, Release 2.0

1.1.5.30 Inconsistent Hierarchy

Definition:
* The macro component hierarchy is inconsistent with the structure of the GUI

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Bad smells and refactoring methods for GUI test script

1.1.5.31 Integration Test, Masquerading As Unit Test

Definition:
* where there are too many layers involved in making a unit test, so it runs too long

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Test Smells - The Coding Craftsman

1.1.5.32 Intermittent Test Failures

Definition:

* You run them with the same inputs over and over again, and usually, but not always, they produce the same

output.

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

1.1. Code related

99

https://ieeexplore.ieee.org/abstract/document/6299294
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

e Unit Testing Smells: What Are Your Tests Telling You?

1.1.5.33 Is There Anybody There?

Definition:
* Any flickering test that occasionally breaks a build — bad test or bad code?

Code Example:

@Test

public void testMethod() {
int expected = 5;
int actual = MyUnstableClass.doSomethingWithRandomReturns();
assertEquals(expected, actual);

¥

References:

Quality attributes
* - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

¢ Test Smells - The Coding Craftsman

1.1.5.34 Lack Of Encapsulation

Definition:

* The implementation details of a test are not properly hidden in the implementation layer and start appearing in

its acceptance criteria.

References:

Quality attributes
e - Code Example
- Cause and Effect
* - Frequency

e - Refactoring

* Bad smells and refactoring methods for GUI test script
* On the Maintenance of System User Interactive Tests

e Smells in System User Interactive Tests

100

Chapter 1. Contents

https://dzone.com/articles/unit-testing-smells-what-are-your-tests-telling-yo
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://ieeexplore.ieee.org/abstract/document/6299294
https://orbilu.uni.lu/handle/10993/48254
https://arxiv.org/abs/2111.02317

Test Smells Catalog, Release 2.0

1.1.5.35 Lack Of Macro Events

Definition:

A macro component does not have any macro events.

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Bad smells and refactoring methods for GUI test script

1.1.5.36 Literal Pollution

Definition:

When writing tests for the application code it is mostly required also to provide some data to be able to test the
functionality. This is mostly done by defining literals in the test code. However an excessive use of literals can
cause severe problems: * Too many literals are distracting and obfuscate the functionality and purpose of a test.
This makes a test hard to read and understand. * The same or similar test data is often repeated within a test or
testsuite. This is often a consequence of simply extending or adding tests without actually designing them. The
result is a test-suite that is extremely hard to maintain and refactor. We detected such Duplication in harvesting
our case study.

Code Example:

UrlTest >> #testUsernamePasswordPrinting
#('http://user:pword@someserver.blah:8000/root/index.html’
"http://user@someserver.blah:8000/root/index.html’
"http://user:pword@someserver.blah/root/index.html’

) do: [:urlText | self should: [urlText = urlText asUrl asString]].

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Assessing test quality - TestLint

1.1. Code related 101

https://ieeexplore.ieee.org/abstract/document/6299294
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.9594

Test Smells Catalog, Release 2.0

1.1.5.37 Long Parameter List

Definition:
* High number of formal parameters.

Code Example:

function fl(integer il, integer i2, integer i3, integer i4, integer i5, integer i6) {
// some behavior. ..

}

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* A Refactoring Tool for TTCN-3

* An approach to quality engineering of TTCN-3 test specifications
* Bad smells and refactoring methods for GUI test script

* Pattern-based Smell Detection in TTCN-3 Test Suites

 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.5.38 Lost Test

Definition:

* The number of tests being executed in a test suite has dropped (or has not increased as much as expected). We
may notice this directly if we are paying attention to test counts or we may find a bug that should have been
caused by a test that we know exists but upon poking around we discover that the test has been disabled.

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

» xUnit test patterns: Refactoring test code

102 Chapter 1. Contents

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.115.3594&rep=rep1&type=pdf
https://link.springer.com/article/10.1007/s10009-008-0075-0
https://ieeexplore.ieee.org/abstract/document/6299294
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

1.1.5.39 Meaningless Variable Names

Definition:

 Unable to tell which variable is for what
Code Example:

* No code examples yet...

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Test Development Patterns and Anti-Patterns - Medium

1.1.5.40 Messy Test

Definition:

* Tests that contain repeated code, copy&paste, disorganized structure and literal values

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

* A testing anti-pattern safari

1.1.5.41 Missed Skip Rotten Green Test

Definition:

* Test methods contain guards to stop their execution early under certain conditions.

Code Example:

@Test
public void testNormalizedKeysGreatSmallAscDescHalfLenght(){
TypeComparator<T> comparator = getComparator(true);
if (not(comparator.supportsNormalizedKey())){
return;

}

(continues on next page)

1.1. Code related

103

https://medium.com/test-go-where/test-development-patterns-and-anti-patterns-78820e1802df
https://www.youtube.com/watch?v=VBgySRk0VKY

Test Smells Catalog, Release 2.0

(continued from previous page)

testNormalizedKeysGreatSmall (true, comparator,true);
testNormalizedKeysGreatSmall (false, comparator,true);

}

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Rotten green tests in Java, Pharo and Python

1.1.5.42 Missing Variable Definition

Definition:

* A variable or out parameter is read before its value has been defined. Access to undefined variables might result
in unpredictable behavior.

Also Known As:
e Ur Data Flow Anomaly
Code Example:

function f (in integer i, out integer j) {
var integer k := 1, 1;
ji=1i+3j+k+1;

}

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

104 Chapter 1. Contents

https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s10664-021-10016-2&casa_token=8C-rVSu9l74AAAAA:2s5rmzBFiH74xHZlTdpZsQCxwqL4cYIbWRH6Bdq1ehTjnxcpOwi8PPkhDrhKpHqjdrQf1_ZXaVRy5BysSQ
https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

1.1.5.43 Missing Verdict

Definition:

* A test case does not set a verdict. Normally a test case should set a verdict before terminating.

Code Example:

testcase exampleTestCase () runs on ExampleComponent {
timer tguard;

// - ..
tguard.start(10.0);
alt {

[] pt.receive(aMessageOne) {
tguard.stop;
setverdict(pass);
pt.send(aMessageTwo) ;

}

[] anyport.receive {
repeat;

}

[1 tguard.timeout {
stop;

}

}
}
References:
Quality attributes

* - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.5.44 Mistaken Identity

Definition:
* where the name of a test gives a contrary opinion to the meaning of the test

References:

Quality attributes
¢ - Code Example

e - Cause and Effect

1.1. Code related 105

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

- Frequency

* - Refactoring

 Test Smells - The Coding Craftsman

1.1.5.45 Mixed Selectors

Definition:

* The problem of mixing up all the methods of a test-class is that it is harder to allocate and differentiate accessors,
xtures, utilities and test-methods. By putting each type of method into a different method category, especially
strictly separating test-methods from other methods we get a better structure of the test-class. A better and cleaner
structure helps in understanding the test-suite, the xtures and all the test-methods.

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

e - Refactoring

* Assessing test quality - TestLint
* Automatic generation of smell-free unit tests
* Rule-based Assessment of Test Quality

¢ Test Smell Detection Tools: A Systematic Mapping Study

1.1.5.46 Name-Clashing Import

Definition:

* An imported element causes a name clash with a declaration in the importing module or another imported ele-
ment.

Code Example:

module Foo {
const charstring MY_CONST := "foo";

¥

module Bar {
import from Foo all;

const charstring MY_CONST :

"bar";

function f(in charstring s) return boolean {
if (MY_CONST == s) {
return true;
(continues on next page)

106 Chapter 1. Contents

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.9594
https://repositorio.ul.pt/handle/10451/56819
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

}

return false;

3
¥

(continued from previous page)

References:

Quality attributes

e - Code Example

e - Cause and Effect

* - Frequency

* - Refactoring

¢ Pattern-based Smell Detection in TTCN-3 Test Suites

1.1.5.47 Non-Functional Statement

Definition:

* When there is an empty scope within a test method. In Python, this occurs with the use of the pass keyword

within a scope

References:

Quality attributes

¢ - Code Example

¢ - Cause and Effect

* - Frequency

- Refactoring

* Handling Test Smells in Python: Results from a Mixed-Method Study
e TEMPY: Test Smell Detector for Python

1.1.5.48 Nondeterministic Test

Definition:

* Test failures occur at random even when only a single Test Runner is running tests.

Code Example:

Suite.run() --> Test 3 fails
Suite.run() --> Test 3 crashes
Suite.run() --> All tests pass
Suite.run() --> Test 3 fails

1.1. Code related

107

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3474624.3477066
https://dl.acm.org/doi/10.1145/3555228.3555280

Test Smells Catalog, Release 2.0

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

* - Refactoring

 Categorising Test Smells

» xUnit test patterns: Refactoring test code

1.1.5.49 Opaque Output

Definition:
* This occurs when the output does not show what was tested.

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Design Patterns for Database API Testing 1: Web Service Saving 2 — Code

1.1.5.50 Over-Eager Helper

Definition:

» where there’s a helper method that probes the system and then performs an assertion, rather than return its result
for the caller to assert.

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

e Test Smells - The Coding Craftsman

108 Chapter 1. Contents

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
http://aprogrammerwrites.eu/?p=1616
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.1.5.51 Over-Specific Runs On

Definition:

* A behavioral entity (function, test case or altstep) is declared to run on a component, but uses only elements of
this component’s super-component or no elements of the component at all.

Code Example:

type component BaseComponentType {
port OutPort pOut;
}

type component ExtendedComponentType extends BaseComponentType {
port InPort pln;
timer t;

}

function f(string aMessage) runs on ExtendedComponentType {
if (checkSomething()) {
pOut.sent (aMessage) ;
}
}

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

* - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

« Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.5.52 Overreferencing

Definition:

* It is about test-methods referencing many times classes from the application code. The main problem with an
Overreferencing Test is that it causes a lot of unnecessary dependencies towards the model code. That distracts
from the goal of the test.

* Test creating unnecessary dependencies and causing duplication

Code Example:

BooleanTypesTest >> #testTrueFalseSubtype
| system boolType boolMetaType |
system := TPStructuralTypeSystem new.
(continues on next page)

1.1. Code related 109

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

(continued from previous page)

boolType := TPClassType on: Boolean.

self assert: (system is: (TPClassType on: True) subtypeOf: boolType).

self assert: (system is: (TPClassType on: False) subtypeOf: boolType).

self assert: (system is: (TPClassType on: False) subtypeOf: (TPClassType on: True)).
self assert: (system is: (TPClassType on: True) subtypeOf: (TPClassType on: False)).
boolMetaType := TPClassType on: Boolean class.

self assert: (system is: (TPClassType on: True class) subtypeOf: boolMetaType).

self assert: (system is: (TPClassType on: False class) subtypeOf: boolMetaType).

self assert: (system is: (TPClassType on: False class) subtypeOf: (TPClassType on:..
—True class)).

self assert: (system is: (TPClassType on: True class) subtypeOf: (TPClassType on:..
—False class)).

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

* Assessing test quality - TestLint
* Automatic generation of smell-free unit tests
* Rule-based Assessment of Test Quality

e Test Smell Detection Tools: A Systematic Mapping Study

1.1.5.53 Proper Organization

Definition:
* Violating testing conventions by using bad organization of methods

References:

Quality attributes
¢ - Code Example

e - Cause and Effect

110 Chapter 1. Contents

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.9594
https://repositorio.ul.pt/handle/10451/56819
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

* - Frequency

* - Refactoring

* Automatic generation of smell-free unit tests

* Rule-based Assessment of Test Quality

Test Smell Detection Tools: A Systematic Mapping Study

1.1.5.54 Sensitive Locators

Definition:

» The test uses element identification selectors that have long chains to identify an element in the user interface.

e.g. complex x-pass or CSS selector for web application.

References:

Quality attributes
* - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* On the Maintenance of System User Interactive Tests

e Smells in System User Interactive Tests

1.1.5.55 Short Template

Definition:

» Template definition is very short (in terms of characters or number of fields).

Code Example:

template integer exampleTemplate := 1;

testcase exampleTestCase() runs on ExampleComponent {
Jf ooc
pt.send(exampleTemplate);
Jf ooc

}

References:

Quality attributes
¢ - Code Example
e - Cause and Effect

* - Frequency

1.1. Code related

111

https://repositorio.ul.pt/handle/10451/56819
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335
https://orbilu.uni.lu/handle/10993/48254
https://arxiv.org/abs/2111.02317

Test Smells Catalog, Release 2.0

e - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.5.56 Singular Component Variable/Constant/Timer Reference

Definition:

* A component variable, constant or timer is referenced by one single function, test case or altstep only, although
other behavioral entities run on the component as well.

Code Example:

module SingularComponentVCTReference {
type port ExamplePort message {
inout charstring;

3

type component c {
timer t;
port ExamplePort p;
}

function f£() runs on c {
p.send("bar");
p.send("baz");

}

testcase tc() runs on c {
t.start(10.0);
alt {
[1] p.receive("foo") {
p.send("bar");
}
[] any port.receive {
// error handling
}
[] t.timeout {
// error handling
}
}
}
}

References:

Quality attributes
¢ - Code Example

¢ - Cause and Effect

112 Chapter 1. Contents

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

* - Frequency

* - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

* Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.5.57 Singular Template Reference

Definition:
* A template definition is referenced only once.

Code Example:

template MyMessageType exampleTemplate := {
fieldl := omit,
field2 := "foo",
field3 := true

¥

testcase exampleTestCase() runs on ExampleComponent {

// ...
pt.send(exampleTemplate);

I oo
}

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

» Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1. Code related

113

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16
https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

1.1.5.58 Stop In Function

Definition:

* A function contains a stop statement. If possible, functions should not contain any stop statement, because this
can prevent the execution of postambles (e.g. code that has to be executed after each test case). Instead, functions
should use return values. However, this smell should be classified weak compared to other smells.

Code Example:

function £ {
timer t := 50;
t.start(Q;

alt {

[1 p.receive("foo") {
t.stop;
setverdict(pass);

}

[] t.timeout {
setverdict(inconc);
stop;

}

}
}

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.5.59 Test Body Is Somewhere Else

Definition:

e When the test method calls another method entirely with no other implementation in the test method — often a
sign of missing parameterised test

Code Example:

@Test

public void hasCorrectFoo() {
checkFoo(Q);

}

(continues on next page)

114 Chapter 1. Contents

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

(continued from previous page)

private static checkFoo() {

Foo foo = service.getFoo();

assertThat (foo.getBar()).isEqualTo("baz");
}

References:

Quality attributes
e - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

e Test Smells - The Coding Craftsman

1.1.5.60 Test-Class Name

Definition:
* A test that has a class with a meaningless name.

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

* - Refactoring

* Automatic generation of smell-free unit tests

* Rule-based Assessment of Test Quality

Test Smell Detection Tools: A Systematic Mapping Study

1.1.5.61 Test-Method Category Name

Definition:
* A test method has a meaningless name

References:

Quality attributes
¢ - Code Example

¢ - Cause and Effect

1.1. Code related 115

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://repositorio.ul.pt/handle/10451/56819
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

* - Frequency

* - Refactoring

* Rule-based Assessment of Test Quality

 Test Smell Detection Tools: A Systematic Mapping Study

1.1.5.62 Testing For A Specific Bug

Definition:

* Sometimes you need to reproduce a bug so a new test case is created for reproducing that bug. Most times
developers are less descriptive in naming these tests calling them something like “testForBugXYZ”

References:

Quality attributes
e - Code Example
- Cause and Effect
* - Frequency

e - Refactoring

* Anti-Patterns In Unit Testing

1.1.5.63 Testy Testy Test Test

Definition:

» where the name of a test contains the name test, which is hardly surprising, as it’s a test, in a test fixture that’s
probably annotated with an annotation/attribute called test

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

Test Smells - The Coding Craftsman

116 Chapter 1. Contents

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335
https://completedeveloperpodcast.com/anti-patterns-in-unit-testing/
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.1.5.64 The Conjoined Twins

Definition:

* Tests that people are calling “Unit Tests” but are really integration tests since they are not isolated from depen-
dencies (file configuration, databases, services, other in other words the parts not being tested in your tests that
people got lazy and did not isolate) and fail due to dependencies that should have been stubbed or mocked.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

e Unit Testing Anti-Patterns, Full List

¢ Unit testing Anti-patterns catalogue

1.1.5.65 The Enumerator

Definition:

* A unit test where each test case method name is only an enumeration, i.e. testl, test2, test3. As a result, the
intention of the test case is unclear, and the only way to be sure is to read the test case code and pray for clarity.

Also Known As:
¢ Test With No Name

References:

Quality attributes
* - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

e Anti-Patterns - Digital Tapestry
 Categorising Test Smells
e Test-Driven Development: TDD Anti-Patterns

* Unit Testing Anti-Patterns, Full List

1.1. Code related 117

https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html

Test Smells Catalog, Release 2.0

1.1.5.66 The Flickering Test

Definition:

¢ A test which just occasionally fails, and is generally due to race conditions within the test. Typically occurs when
testing something that is asynchronous. Possibly a superset of the Wait and See and The Sleeper anti-patterns.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Anti-Patterns - Digital Tapestry

* Unit testing Anti-patterns catalogue

1.1.5.67 The Forty Foot Pole Test

Definition:

» Afraid of getting too close to the class they are trying to test, these tests act at a distance, separated by countless
layers of abstraction and thousands of lines of code from the logic they are checking. As such they are extremely
brittle, and susceptible to all sorts of side-effects that happen on the epic journey to and from the class of interest.

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Anti-Patterns - Digital Tapestry
e Unit Testing Anti-Patterns, Full List

¢ Unit testing Anti-patterns catalogue

118

Chapter 1. Contents

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue

Test Smells Catalog, Release 2.0

1.1.5.68 The Sleeper

Definition:

* A test that is destined to fail at some specific time and date in the future. This is often caused by incorrect bounds
checking when testing code which uses a Date or Calendar object. Sometimes, the test may fail if run at a very
specific time of day, such as midnight.

Also Known As:
¢ Mount Vesuvius

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

* Anti-Patterns - Digital Tapestry
 Categorising Test Smells

* Unit testing Anti-patterns catalogue

1.1.5.69 The Stepford Fields

Definition:

* Where (too) many of the fields in test contain the same value, making it hard to spot when a calculation is reading
a value from the wrong field, because it works on the test data; this also makes load testing near a cache pretty
meaningless

Code Example:

name:
title: Mr
first: Testing
last: Testing
company: Testing

expect(person.getFullName())
.toBe('Mr Testing Testing');
expect (person.getCompanyName())
.toBe('Testing');

person.company = 'Testing';

expect (person.getCompanyName())
.toBe('Testing');

References:

1.1. Code related 119

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue

Test Smells Catalog, Release 2.0

Quality attributes
* - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

Test Smells - The Coding Craftsman

1.1.5.70 The Test With No Name

Definition:

* The test that gets added to reproduce a specific bug in the bug tracker and whose author thinks does not warrant
a name of its own. Instead of enhancing an existing, lacking test, a new test is created called testForBUG123.
Two years later, when that test fails, you may need to first try and find BUG-123 in your bug tracker to figure out
the test’s intent.

Also Known As:
¢ The Enumerator

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Anti-Patterns - Digital Tapestry
* Categorising Test Smells

¢ Unit testing Anti-patterns catalogue

1.1.5.71 Time Bomb Data

Definition:

* when testing with dates or times, and the choice of test data leads either to a test that starts to fail in the future,
because the current date has changed to a point where the test data is wrong, or where the full range of relevant
date variations is not covered, leading to a bug in the production code on certain days

References:

Quality attributes
e - Code Example
¢ - Cause and Effect

120 Chapter 1. Contents

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue

Test Smells Catalog, Release 2.0

* - Frequency

* - Refactoring

 Test Smells - The Coding Craftsman

1.1.5.72 Time Bombs

Definition:

e Tests that fail due to ever-so-slightly different time values, during certain days of the week or month, or when a
long-running time-sensitive test straddles two hours, days, weeks, months, or years and the code can’t handle it.

Code Example:

Subject under test
require 'bigdecimal'
require 'bigdecimal/util'

class TimeCard
attr_reader :start_time, :end_time

def initialize(hourly_wage)
@hourly_wage = hourly_wage
end

def punch_in(at = nil)
@start_time = at || Time.new
end

def punch_out(at = nil)
@end_time = at || Time.new
end

def wage_owed
seconds = (@end_time || Time.new) - @start_time
hours = seconds / (60 * 60).to_d
bonus = worked_on_weekend? ? 1.5 : 1

@hourly_wage * hours * bonus
end
end

Test
class TimeBombs < SmellTest
include UnreliableMinitestPlugin

def setup
@subject = TimeCard.new(15)
Onow = Time.new
super

end

def test_punch_in_defaults_to_now
(continues on next page)

1.1. Code related 121

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

(continued from previous page)

@subject.punch_in

assert_equal @subject.start_time.to_ms, @now.to_ms
end

def test_calculates_wage_owed
@subject.punch_in(@now)
@subject.punch_out(@now + (60 * 60 * 24))

result = @subject.wage_owed

assert_equal 360, result.to_i
end
end

Fake production implementations to simplify example test of subject
class TimeCard
def worked_on_weekend?

return @start_time.wday === 0 ||
@start_time.wday === 6 ||
@end_time.wday === 0 ||
@end_time.wday === 6
end

end

References:

Quality attributes

* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* A workbook repository of example test smells and what to do about them

* Smells in software test code: A survey of knowledge in industry and academia

1.1.5.73 Time Sensitive Test

Definition:
* Tests that only pass depending on the time of the day they are executed
Code Example:

References:

Quality attributes
* - Code Example

122 Chapter 1. Contents

https://github.com/testdouble/test-smells
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060

Test Smells Catalog, Release 2.0

e - Cause and Effect
* - Frequency

* - Refactoring

* A testing anti-pattern safari

1.1.5.74 Treating Test Code As A Second Class Citizen

Definition:

* Tests with huge code duplication, hardcoded variables, copy-paste segments and several other inefficiencies that
would be considered inexcusable if found on the main code.

References:

Quality attributes
e - Code Example
- Cause and Effect
* - Frequency

e - Refactoring

* Anti-patterns of automated testing

* Software Testing Anti-patterns

1.1.5.75 Unclassified Method Category

Definition:
* A test method that is not organized by a method category.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Rule-based Assessment of Test Quality

Test Smell Detection Tools: A Systematic Mapping Study

1.1. Code related 123

https://www.youtube.com/watch?v=VBgySRk0VKY
https://medium.com/swlh/anti-patterns-of-automated-software-testing-b396283a4cb6
http://blog.codepipes.com/testing/software-testing-antipatterns.html
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

1.1.5.76 Unreachable Default

Definition:

¢ An alt statement contains an else branch while a default is active. The else branch of an alt statement is taken if
no other branch is applicable. If a default is active at the same time, its branches come after all branches of the
alt statement. Hence the default altstep can never be executed if an else branch is present.

Code Example:

testcase myTestcase() runs on {
var default myDefaultVar := activate(myAltstep(t))
alt {
[] p.receive(charstring: ("fool")) {
p.send("ack")
}
[1] p.receive(charstring: ("barl")) {
p.send('"nack")
}
[else] {
setverdict(fail)
log("unexpected behavior")
}
}
deactivate(myDefaultVar)

}

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

» Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.5.77 Unrestricted Imports

Definition:
* A module imports more from another module than needed.

Code Example:

module Foo {
group groupConstants {
const charstr ing := " foo " ;
// some other constants .

(continues on next page)

124

Chapter 1. Contents

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

(continued from previous page)

3

group groupTypes {
// type definitions .
}

group groupComponents {
// component definitions .
}
}

module Baz {
import from all;

function f (in charstring s) return boolean {
if (=s) {
return true;

3

return false;
}
}

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1.5.78 Unsuitable Naming

Definition:

* A keyword, macro component, macro event, or primitive component is not properly named, making the script
difficult to understand.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect

1.1. Code related 125

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

* - Frequency

* - Refactoring

* Bad smells and refactoring methods for GUI test script

1.1.5.79 Unused Imports

Definition:

e An import from another module is never used.

Code Example:
module Foo {
const charstr ing FOO CONST := " foo " ;
}
module Bar {
const charstr ing BAR CONST := " bar " ;

}

module Baz {
import from Foo all;
import from Bar all;

function f (in charstring s) return boolean {
if (FOO_CONST == s) {
return true;

}

return false;
}
}

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

* Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

126 Chapter 1. Contents

https://ieeexplore.ieee.org/abstract/document/6299294
https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

1.1.5.80 Unused Inputs

Definition:
¢ Inputs that are controlled by the test

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Automatic generation of smell-free unit tests

Test Smell Detection Tools: A Systematic Mapping Study

1.1.5.81 Unused Parameter

Definition:

e A parameter is never used within the declaring unit. For in-parameters, the parameter is never read, for out-
parameters never defined, for inout-parameters never accessed at all.

Code Example:

function £ (in integer i , in integer j) return integer {
var integer k :=1 ;
return i + k ;

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.1. Code related 127

https://repositorio.ul.pt/handle/10451/56819
https://dl.acm.org/doi/10.1145/3463274.3463335
https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

1.1.5.82 Unused Shared-Fixture Variables

Definition:
¢ Occurs when a piece of the fixture is never used.

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Rule-based Assessment of Test Quality

Test Smell Detection Tools: A Systematic Mapping Study

1.1.5.83 Unused Variable Definition

Definition:

* A defined variable or in parameter is not read before it becomes undefined.
Also Known As:

* DU Data Flow Anomaly
Code Example:

function £ (in integer i , out integer j) {
var integer k := 1;
=1

}

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

* Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

128 Chapter 1. Contents

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335
https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

1.1.5.84 Unworldly Test Data

Definition:

* where the test data is in a different style to real-world data e.g. time processing based on epoch milliseconds near
0, rather than on sensible timestamps that would be used in the real world

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Test Smells - The Coding Craftsman

1.1.5.85 Using Faker

Definition:

* Faker tests become nondeterministic: run - crashed, run again - passed. Such flaky tests are extremely difficult
to debug and annoying on CI.

Code Example:
* No code examples yet...

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Using Faker is anti-pattern

1.1.5.86 Verbless And Noun-Full

Definition:

» when a test is named after the concept, but not after the intended behaviour it verifies — behaviour would normally
use verbs

References:

Quality attributes

* - Code Example

1.1. Code related 129

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://dev.to/vasily/using-faker-is-anti-pattern-1jgl

Test Smells Catalog, Release 2.0

e - Cause and Effect
* - Frequency

* - Refactoring

* Test Smells - The Coding Craftsman

1.1.5.87 Wasted Variable Definition

Definition:

* A variable is defined and defined again before it is read.
Also Known As:

* DD Data Flow Anomaly
Code Example:

function £ (in integer i , out integer j) {
var integer k :=1 ;
k :=1 ;
j =k

}

References:

Quality attributes
e - Code Example
- Cause and Effect
* - Frequency

e - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
 Pattern-based Smell Detection in TTCN-3 Test Suites

 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.2 Dependencies

1.2.1 Dependencies among tests

1.2.1.1 Chain Gang

Definition:

* A couple of tests that must run in a certain order, i.e. one test changes the global state of the system (global
variables, data in the database) and the next test(s) depends on it.

Also Known As:

130 Chapter 1. Contents

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

* Order Dependent Tests

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Anti-Patterns - Digital Tapestry
* Smells in software test code: A survey of knowledge in industry and academia

» Unit testing Anti-patterns catalogue

1.2.1.2 Constrained Test Order

Definition:

* Tests expecting to be run in a specific order or expecting information from other test results

Code Example:

[TestFixture]
public class IsolationsAntiPatterns

{

private LogAnalyzer logan;

[Test]
public void CreateAnalyzer_BadFileName_ReturnsFalse()

{

logan = new LogAnalyzer();
logan.Initialize();
bool valid = logan.IsValid("abc");

Assert.That(valid, Is.False);
}

[Test]
public void CreateAnalyzer_GoodFileName_ReturnsTrue()

{
bool valid = logan.IsValid("abcdefg");

Assert.That(valid, Is.True);

}

References:

1.2. Dependencies 131

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue

Test Smells Catalog, Release 2.0

Quality attributes
e - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

Chapter 8. The pillars of good unit tests

1.2.1.3 Coupled Tests

Definition:

* This occurs when testing one scenario affects another; for example, when all the test data are created at once and
not rolled back after each scenario and re-created as needed for the next.

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Design Patterns for Database API Testing 1: Web Service Saving 2 — Code

1.2.1.4 Coupling Between Test Methods

Definition:

 Test methods (and all tests in general) must be perfectly isolated from each other. This means that changing one
test must not affect any others.

Code Example:

public final class MetricsTest {

private File temp;

private Folder folder;

@Before

public void prepare() {
this.temp = Files.createTempDirectory("test");
this.folder = new DiscFolder(this.temp);
this.folder.save("first.txt", "Hello, world!");
this.folder.save("second.txt", "Goodbye!");

}

@After

public void clean() {
FileUtils.deleteDirectory(this. temp);

(continues on next page)

132 Chapter 1. Contents

https://apprize.best/c/unit/8.html
http://aprogrammerwrites.eu/?p=1616

Test Smells Catalog, Release 2.0

(continued from previous page)

}
@Test
public void calculatesTotalSize() {
assertEquals(22, new Metrics(this.folder).size());
}
@Test
public void countsWordsInFiles() {
assertEquals(4, new Metrics(this.folder).wc(Q);
}
}

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* A few thoughts on unit test scaffolding
* Refactoring Test Smells With JUnit 5: Why Should Developers Keep Up-to-Date?

1.2.1.5 Dependent Test

Definition:

* Occurs when the test being executed depends on other tests’ success. As a result, dependent tests can fail for the
wrong reason

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Characterizing High-Quality Test Methods: A First Empirical Study
e JTDog: a Gradle Plugin for Dynamic Test Smell Detection
* On the influence of Test Smells on Test Coverage

* On the test smells detection: an empirical study on the jnose test accuracy

Test Smell Detection Tools: A Systematic Mapping Study

1.2. Dependencies 133

https://www.yegor256.com/2015/05/25/unit-test-scaffolding.html
https://ieeexplore.ieee.org/document/9769994/
https://ieeexplore.ieee.org/document/9796158/
https://ieeexplore.ieee.org/document/9678529/
https://dl.acm.org/doi/10.1145/3350768.3350775
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

1.2.1.6 Identity Dodgems

Definition:

» where each test case shares some sort of global resource — perhaps a database, or a singleton data store, so needs
to choose identifiers carefully in order to avoid collisions with other tests. Better in this case to use a central ID
generator, to avoid accidental collisions, or each test having to be aware of all other tests’ choice of IDs.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

Test Smells - The Coding Craftsman

1.2.1.7 Interacting Test Suites

Definition:
* A special case of Interacting Tests where the tests are in different test suites.

Code Example:

Suitel.run()--> Green
Suite2.run()--> Green
Suite(Suitel,Suite2).run()--> Test C in Suite2 fails

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

 Categorising Test Smells

» xUnit test patterns: Refactoring test code

134 Chapter 1. Contents

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

1.2.1.8 Interacting Tests

Definition:

¢ Tests depend on each other in some way. Note that Interacting Test Suites and Lonely Test are specific variations
of Interacting Tests.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

 Categorising Test Smells
¢ Quality defects detection in unit tests

» xUnit test patterns: Refactoring test code

1.2.1.9 Lack Of Cohesion Of Test Cases

Definition:
* Occurs if test cases are grouped together in one test suite but are not cohesive.

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* PyNose: A Test Smell Detector For Python

1.2.1.10 Lack Of Cohesion Of Test Methods

Definition:

* Cohesion of a class indicates how strongly related and focused the various responsibilities of a class are [4].
Classes with high cohesion facilitate code comprehension and maintenance. Low cohesive methods are smelly
because they aggravate reuse, maintainability and comprehension [6], [12]. The smell Lack of Cohesion of test
methods (LCOTM) occurs if test methods are grouped together in one test class, but they are not cohesive.

References:

Quality attributes

1.2. Dependencies 135

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://jrnl.nau.edu.ua/index.php/IPZ/article/download/3084/3036/0
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://ieeexplore.ieee.org/document/9678615/

Test Smells Catalog, Release 2.0

¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Automated Detection of Test Fixture Strategies and Smells

* Automatic Test Smell Detection Using Information Retrieval Techniques
* Automatic generation of smell-free unit tests

* Just-In-Time Test Smell Detection and Refactoring: The DARTS Project

* Strategies for avoiding text fixture smells during software evolution

1.2.1.11 Litter Bugs

Definition:

Test Smell Detection Tools: A Systematic Mapping Study

» Each test has a side effect that persists between test cases, often resulting in tests that depend on one another.

This is often called “test pollution”
Also Known As:
* Test Pollution

Code Example:

Subject under test
$all_time_logins = O

class Game
def self.instance
@game | |= new
end

def initialize
@players = []
end

def add_player(name)
@players << name
$all_time_logins += 1
end

def player_count
@players.size
end
end

Test
class LitterBugs < SmellTest
include UnreliableMinitestPlugin

(continues on next page)

136

Chapter 1. Contents

https://ieeexplore.ieee.org/document/6569744
https://ieeexplore.ieee.org/abstract/document/8530039
https://repositorio.ul.pt/handle/10451/56819
https://fpalomba.github.io/pdf/Conferencs/C51.pdf
https://ieeexplore.ieee.org/document/6624053
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

def setup
@Qgame = .instance
end

def test_login_one_player
@game.add_player("Joe")

assert_equal 1, @game.player_count
assert_equal 1, $all_time_logins
end

def test_login_two_players
@game.add_player("Jane")
@game.add_player("Stef")

assert_equal 3, @game.player_count
assert_equal 3, $all time_logins
end

end

(continued from previous page)

References:

Quality attributes

¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* A workbook repository of example test smells and what to do about them

1.2.1.12 Lonely Test

Definition:

* Lonely Test is a special case of Interacting Tests in which a test can be run as part of a suite but cannot be run by
itself because it depends on something in a Shared Fixture that was created by another test (e.g. Chained Tests
(page X)) or by suite-level fixture setup logic (such as a Setup Decorator.)

References:

Quality attributes

* - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

 Categorising Test Smells

1.2. Dependencies

137

https://github.com/testdouble/test-smells
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf

Test Smells Catalog, Release 2.0

» xUnit test patterns: Refactoring test code

1.2.1.13 Order Dependent Tests

Definition:

* The tests have to be executed in a certain order due to dependencies between them.
Also Known As:

* Chained Tests, Chain Gang
Code Example:

class AnimalTest <

def test_create_record

a = .create! (name:"Lion'")
assert_not_nil a
end

def test_find_record
& = .find_by_name("Lion")
assert_not_nil a

end

end

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

* A testing anti-pattern safari
 Categorising Test Smells

* Smells of Testing (signs your tests are bad)

1.2.1.14 Test Pollution

Definition:

* Test that introduces dependencies such as reading/writing a shared resource
Also Known As:

 Litter Bugs

References:

138 Chapter 1. Contents

https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://www.youtube.com/watch?v=VBgySRk0VKY
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://jakescruggs.blogspot.com/2009/04/smells-of-testing-signs-your-tests-are.html

Test Smells Catalog, Release 2.0

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Automatic generation of smell-free unit tests

Test Smell Detection Tools: A Systematic Mapping Study

1.2.1.15 Test Run War

Definition:

Test failures occur at random when several people are running tests simultaneously.

Code Example:

Suite.run() --> Test 3 fails
Suite.run() --> Test 3 crashes
Suite.run() --> All tests pass
Suite.run() --> Test 3 fails

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

A survey on test practitioners’ awareness of test smells

An empirical analysis of the distribution of unit test smells and their impact on software maintenance
An exploratory study of the relationship between software test smells and fault-proneness

Are test smells really harmful? An empirical study

Automatic generation of smell-free unit tests

Categorising Test Smells

Enhancing developers’ awareness on test suites’ quality with test smell summaries

How are test smells treated in the wild? A tale of two empirical studies

On the interplay between software testing and evolution and its effect on program comprehension
Refactoring Test Code

Refactoring Test Smells With JUnit 5: Why Should Developers Keep Up-to-Date?

Test Smell Detection Tools: A Systematic Mapping Study

1.2. Dependencies

139

https://repositorio.ul.pt/handle/10451/56819
https://dl.acm.org/doi/10.1145/3463274.3463335
https://arxiv.org/abs/2003.05613
https://ieeexplore.ieee.org/document/6405253
https://ieeexplore.ieee.org/abstract/document/8847402/
https://link.springer.com/article/10.1007/s10664-014-9313-0
https://repositorio.ul.pt/handle/10451/56819
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://lutpub.lut.fi/handle/10024/158751
https://sol.sbc.org.br/journals/index.php/jserd/article/download/1802/1807/7485
https://link.springer.com/chapter/10.1007/978-3-540-76440-3_8
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.5499&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/9769994/
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

 Understanding practitioners’ strategies to handle test smells: a multi-method study

xUnit test patterns: Refactoring test code

1.2.1.16 The Environmental Vandal

Definition:

e A ‘unit’ test which for various ‘requirements’ starts spilling out into its environment, using and setting envi-
ronment variables / ports. Running two of these tests simultaneously will cause ‘unavailable port’ exceptions

etc.

Also Known As:

The Local Hero

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Unit testing Anti-patterns catalogue

1.2.1.17 The Inhuman Centipede

Definition:

* where a test can only function in sequence with those around it. While there are some situations where this is an

expected/necessary evil, it’s a terrible default.

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Test Smells - The Coding Craftsman

140

Chapter 1. Contents

https://dl.acm.org/doi/10.1145/3474624.3474639
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.2.1.18 The Leaky Cauldron

Definition:

* similar to Identity Dodgems this is a test which is either sensitive to some state caused by other tests, or which
creates a mess that breaks other tests

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Test Smells - The Coding Craftsman

1.2.1.19 The Parasite

Definition:
* atest which should be written stand-alone, but depends on the running of a previous test

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

Test Smells - The Coding Craftsman

1.2.1.20 The Peeping Tom

Definition:

* A test that, due to the shared resources, can see the result data of another test, and may cause the test to fail even
though the system under test is perfectly valid. This has been seen commonly in Fitnesse, where the use of static
member variables to hold collections aren’t properly cleaned after test execution, often popping up unexpectedly
in other test runs.

Also Known As:
¢ The Uninvited Guests

References:

Quality attributes

1.2. Dependencies 141

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Anti-Patterns - Digital Tapestry
* Categorising Test Smells

¢ Test-Driven Development: TDD Anti-Patterns

1.2.1.21 Unusual Test Order

Definition:
¢ Tests calling each other explicitly (unusual for unit tests)

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Automatic generation of smell-free unit tests
* Rule-based Assessment of Test Quality

e Test Smell Detection Tools: A Systematic Mapping Study

1.2.2 External dependencies

1.2.2.1 Context Sensitivity

Definition:

* Changing the state or behaviour of the context in which the production code is embedded causes the failure of
the test. This is the case, for example, when the code that is changed does not belong to the system under test.

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

142 Chapter 1. Contents

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://repositorio.ul.pt/handle/10451/56819
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

» Categorising Test Smells

» xUnit test patterns: Refactoring test code

1.2.2.2 Counting On Spies

Definition:

 occurs when injecting a proxy ob- ject (spy) in place of a dependency (or collaborator), and spying on how the
consuming class calls it.

References:

Quality attributes
e - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* Smells in software test code: A survey of knowledge in industry and academia

1.2.2.3 Data Sensitivity

Definition:

 Data Sensitivity occurs when a test fails because the data being used to test the SUT has been modified. It most
commonly occurs when the contents of the test database is changed.

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

 Categorising Test Smells

» xUnit test patterns: Refactoring test code

1.2. Dependencies 143

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

1.2.2.4 External Data

Definition:

* A test that needs external data (fixtures, files, helper classes, etc.) in order to run can be hard to understand as
the reader must file hop to get a clear picture.

Also Known As:
* Mystery Guest

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* Smells of Testing (signs your tests are bad)

1.2.2.5 External Dependencies

Definition:

e There are a number of external dependencies that code may need to rely on to work correctly. For example:
a specific time or date, a third-party library jar, a file, a database, a network connection, a web container, an
application container, randomness, many other dependencies

References:

Quality attributes
e - Code Example
- Cause and Effect
* - Frequency

e - Refactoring

 Categorising Test Smells

* JUnit Anti-patterns

144 Chapter 1. Contents

https://jakescruggs.blogspot.com/2009/04/smells-of-testing-signs-your-tests-are.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://exubero.com/junit/anti-patterns/

Test Smells Catalog, Release 2.0

1.2.2.6 Factories Depending On Database Records

Definition:

* Adding a hard dependency on specific database records in factory definitions leads to build failures in CI envi-
ronment.

Code Example:

factory :active_schedule do

start_date .current - 1.month

end_date 1.month.since(.current)

processing_status "processed"

schedule_duration .find_by_name("Custom")
end

References:

Quality attributes
* - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Rails Testing Antipatterns: Fixtures and Factories

1.2.2.7 Hidden Dependency

Definition:

¢ Closely related to the local hero, a unit test that requires some existing data to have been populated somewhere
before the test runs. If that data wasn’t populated, the test will fail and leave little indication to the developer
what it wanted, or why... forcing them to dig through acres of code to find out where the data it was using was
supposed to come from.

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

* Anti-Patterns - Digital Tapestry
¢ Categorising Test Smells
* Smells in software test code: A survey of knowledge in industry and academia

* Tdd antipatterns: Local hero

1.2. Dependencies 145

https://semaphoreci.com/blog/2014/01/14/rails-testing-antipatterns-fixtures-and-factories.html
https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060
https://semaphoreci.com/blog/2014/07/10/tdd-antipatterns-local-hero.html

Test Smells Catalog, Release 2.0

 Test-Driven Development: TDD Anti-Patterns

 Unit testing Anti-patterns catalogue

1.2.2.8 Hidden Integration Test

Definition:
* A PUT outcome depends on the state of the environment.

Code Example:

[PexMethod]

void FileExists(string fileName) {
if (!File.Exists(fileName))

throw new FileNotFoundException();

}

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

e Parameterized Test Patterns For Effective Testing with Pex

1.2.2.9 Local Only Testing

Definition:

* The recurring coding pattern of only using the local environment to conduct Ansible testing
Code Example:

* No code examples yet...

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* As Code Testing: Characterizing Test Quality in Open Source Ansible Development

* Practitioner Perceptions of Ansible Test Smells

146 Chapter 1. Contents

https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.6145&rep=rep1&type=pdf
https://ieeexplore.ieee.org/abstract/document/9787876
https://ieeexplore.ieee.org/document/10092644/

Test Smells Catalog, Release 2.0

1.2.2.10 Middle Man

Definition:
* A test component (keyword, macro, function) delegates all its tasks to another test component.

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Bad smells and refactoring methods for GUI test script
* On the Maintenance of System User Interactive Tests

* Smells in System User Interactive Tests

1.2.2.11 Mystery Guest

Definition:

* A test case that uses external resources that are not managed by a fixture. A drawback of this approach is that
the interface to external resources might change over time necessitating an update of the test case, or that those
resources might not be available when the test case is run, endangering the deterministic behavior of the test.

Also Known As:
¢ External Data

Code Example:

public void testGetFlightsByFromAirport_OneOutboundFlight_mg() throws Exception {
loadAirportsAndFlightsFromFile("test-flights.csv");
// Exercise System
List flightsAtOrigin = facade.getFlightsByOriginAirportCode("YYC");
// Verify Outcome
assertEquals(1, flightsAtOrigin.size());
FlightDto firstFlight = (FlightDto) flightsAtOrigin.get(0);
assertEquals("Calgary", firstFlight.getOriginCity());

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

1.2. Dependencies 147

https://ieeexplore.ieee.org/abstract/document/6299294
https://orbilu.uni.lu/handle/10993/48254
https://arxiv.org/abs/2111.02317

Test Smells Catalog, Release 2.0

* A preliminary evaluation on the relationship among architectural and test smells

* A survey on test practitioners’ awareness of test smells

* An Empirical Study into the Relationship Between Class Features and Test Smells

* An Exploratory Study on the Refactoring of Unit Test Files in Android Applications

* An empirical analysis of the distribution of unit test smells and their impact on software maintenance
* An empirical investigation into the nature of test smells

* An exploratory study of the relationship between software test smells and fault-proneness

* Are test smells really harmful? An empirical study

» Assessing diffusion and perception of test smells in scala projects

* Automatic Identification of High-Impact Bug Report by Product and Test Code Quality

* Automatic generation of smell-free unit tests

* Categorising Test Smells

* Detecting redundant unit tests for Aspect] programs

* Enhancing developers’ awareness on test suites’ quality with test smell summaries

* Handling Test Smells in Python: Results from a Mixed-Method Study

* How are test smells treated in the wild? A tale of two empirical studies

* Investigating Severity Thresholds for Test Smells

* Investigating Test Smells in JavaScript Test Code

* Let’s not

* Machine Learning-Based Test Smell Detection

* Mystery Guest

* Obscure Test

* On the Distribution of “Simple Stupid Bugs” in Unit Test Files: An Exploratory Study

* On the Relation of Test Smells to Software Code Quality

* On the diffusion of test smells and their relationship with test code quality of Java projects

* On the diffusion of test smells in automatically generated test code: an empirical study

* On the distribution of test smells in open source Android applications: an exploratory study
* On the influence of Test Smells on Test Coverage

* On the interplay between software testing and evolution and its effect on program comprehension
* On the test smells detection: an empirical study on the jnose test accuracy

* On the use of test smells for prediction of flaky tests

* Rails Testing Antipatterns

* Refactoring Test Code

» Refactoring Test Smells With JUnit 5: Why Should Developers Keep Up-to-Date?

* Revisiting Test Smells in Automatically Generated Tests: Limitations, Pitfalls, and Opportunities

* Scented since the beginning: On the diffuseness of test smells in automatically generated test code

148 Chapter 1. Contents

https://ieeexplore.ieee.org/document/10006864/
https://arxiv.org/abs/2003.05613
https://ieeexplore.ieee.org/document/7890581
https://dl.acm.org/doi/10.1145/3387940.3392189
https://ieeexplore.ieee.org/document/6405253
https://dl.acm.org/doi/10.1145/2970276.2970340
https://ieeexplore.ieee.org/abstract/document/8847402/
https://link.springer.com/article/10.1007/s10664-014-9313-0
https://dl.acm.org/doi/10.1109/MSR.2019.00072
https://huang.zj.cn/pdf/J13.pdf
https://repositorio.ul.pt/handle/10451/56819
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://ieeexplore.ieee.org/abstract/document/4021983
https://lutpub.lut.fi/handle/10024/158751
https://dl.acm.org/doi/10.1145/3474624.3477066
https://sol.sbc.org.br/journals/index.php/jserd/article/download/1802/1807/7485
https://dl.acm.org/doi/abs/10.1145/3379597.3387453
https://dl.acm.org/doi/10.1145/3482909.3482915
https://thoughtbot.com/blog/lets-not
https://arxiv.org/abs/2208.07574
https://thoughtbot.com/blog/mystery-guest
http://xunitpatterns.com/Obscure%20Test.html
https://ieeexplore.ieee.org/document/9463091
https://ieeexplore.ieee.org/document/8529832
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://dl.acm.org/doi/10.1145/2897010.2897016
https://dl.acm.org/doi/10.5555/3370272.3370293
https://dl.acm.org/doi/10.1145/3350768.3350775
https://link.springer.com/chapter/10.1007/978-3-540-76440-3_8
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://dl.acm.org/doi/abs/10.1145/3482909.3482916
https://thoughtbot.com/upcase/videos/testing-antipatterns
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.5499&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/9769994/
https://ieeexplore.ieee.org/document/9240691
https://www.sciencedirect.com/science/article/pii/S0164121219301487?casa_token=UT0EMFzxTcQAAAAA:L9J82_15tdySkabcIMSHKPx8rVkrltOzcwgme5cIBWgT0txJENY5y-BdUmCYUoGHnoEjZJH-cYc

Test Smells Catalog, Release 2.0

* SoCRATES: Scala radar for test smells

* Software Unit Test Smells

 Test Smell Detection Tools: A Systematic Mapping Study

» TestAXE: Automatically Refactoring Test Smells Using JUnit 5 Features

* TestQ: Exploring Structural and Maintenance Characteristics of Unit Test Suites

* The Relation of Test-Related Factors to Software Quality: A Case Study on Apache Systems
* The secret life of test smells-an empirical study on test smell evolution and maintenance

* To What Extent Can Code Quality be Improved by Eliminating Test Smells?

» Toward static test flakiness prediction: a feasibility study

» Towards Automated Tools for Detecting Test Smells: An Empirical Investigation into the Nature of Test Smells
* What We Know About Smells in Software Test Code

e What the Smell? An Empirical Investigation on the Distribution and Severity of Test Smells in Open Source
Android Applications

* Why do builds fail?—A conceptual replication study

* tsDetect: an open source test smells detection tool

1.2.2.12 Programming Paradigms Blend

Definition:
* When there are fields initialized outside the test class (global scope) and used in the test class

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

e Handling Test Smells in Python: Results from a Mixed-Method Study
* TEMPY: Test Smell Detector for Python

1.2.2.13 Remote Mystery Guest

Definition:

» The recurring coding pattern of using a remote artifact for test play execution, which needs to be accessed via an
HTTP/HTTPS-based URL.

Code Example:

* No code examples yet...

1.2. Dependencies 149

https://dl.acm.org/doi/10.1145/3337932.3338815
https://testsmells.org/
https://dl.acm.org/doi/10.1145/3463274.3463335
https://sol.sbc.org.br/index.php/cbsoft_estendido/article/view/22311
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.6409&rep=rep1&type=pdf
https://search.proquest.com/openview/c52d821a4dd6ecb046957d9d6a532ae0/1?pq-origsite=gscholar&cbl=326341
https://link.springer.com/article/10.1007/s10664-021-09969-1
https://ieeexplore.ieee.org/document/9763153/
https://dl.acm.org/doi/10.1145/3472674.3473981
https://dibt.unimol.it/staff/fpalomba/documents/C14.pdf
https://ieeexplore.ieee.org/document/8501942
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.sciencedirect.com/science/article/pii/S0164121221000364
https://dl.acm.org/doi/10.1145/3368089.3417921
https://dl.acm.org/doi/10.1145/3474624.3477066
https://dl.acm.org/doi/10.1145/3555228.3555280

Test Smells Catalog, Release 2.0

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

* - Refactoring

* As Code Testing: Characterizing Test Quality in Open Source Ansible Development

* Practitioner Perceptions of Ansible Test Smells

1.2.2.14 Require External Resources

Definition:
* Test require external resources but can not guarantee their state and availability

Code Example:

class Clever
def districts
url = "/districts"
key = "DEMO_KEY"
‘curl -u #{key}: #{host #{url}"
end
end

class External < Test::Unit::TestCase
def test_get_clever_data
c = Clever.new
assert_include c.districts, 'Demo’
end
end

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* A testing anti-pattern safari

150

Chapter 1. Contents

https://ieeexplore.ieee.org/abstract/document/9787876
https://ieeexplore.ieee.org/document/10092644/
https://www.youtube.com/watch?v=VBgySRk0VKY

Test Smells Catalog, Release 2.0

1.2.2.15 Resource Leakage

Definition:

¢ The test uses finite resources. If the tests do not release them in the end, all of the resources are allocated and
tests which need the resources begin to fail with time.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

 Categorising Test Smells
* Refactoring Test Smells With JUnit 5: Why Should Developers Keep Up-to-Date?

» xUnit test patterns: Refactoring test code

1.2.2.16 Resource Optimism

Definition:

* This smell happens when test methods make optimistic assumptions about the existence or the state of external
resources like files and databases.

e This smell occurs when a test method makes an optimistic assumption that the external resource (e.g., File),
utilized by the test method, exists.

Code Example:

@Test
public void saveImage_noImageFile_ko() throws IOException {

File outputFile = File.createTempFile("prefix", "png", new File("/tmp"));

ProductImage image = new ProductImage("01010101010101", ProductImageField.FRONT,.
—outputFile);

Response response = serviceWrite.savelImage(image.getCode(), image.getField(), image.
—getImguploadFront(), image.getImguploadIngredients(), image.getImguploadNutrition()).
—execute(Q);

assertTrue(response.isSuccess());

assertThatJson(response.body())

.node("status")
.isEqualTo("status not ok");

References:

Quality attributes
* - Code Example

e - Cause and Effect

1.2. Dependencies 151

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/9769994/
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

* - Frequency

* - Refactoring

* A preliminary evaluation on the relationship among architectural and test smells

* A survey on test practitioners’ awareness of test smells

* An Exploratory Study on the Refactoring of Unit Test Files in Android Applications

* An empirical analysis of the distribution of unit test smells and their impact on software maintenance
* An exploratory study of the relationship between software test smells and fault-proneness

* Are test smells really harmful? An empirical study

* Automatic Identification of High-Impact Bug Report by Product and Test Code Quality

* Automatic generation of smell-free unit tests

* Categorising Test Smells

* Enhancing developers’ awareness on test suites’ quality with test smell summaries

* Handling Test Smells in Python: Results from a Mixed-Method Study

* How are test smells treated in the wild? A tale of two empirical studies

* Investigating Severity Thresholds for Test Smells

* Investigating Test Smells in JavaScript Test Code

* Machine Learning-Based Test Smell Detection

* On the Distribution of “Simple Stupid Bugs” in Unit Test Files: An Exploratory Study

* On the Relation of Test Smells to Software Code Quality

* On the diffusion of test smells and their relationship with test code quality of Java projects

* On the diffusion of test smells in automatically generated test code: an empirical study

* On the distribution of test smells in open source Android applications: an exploratory study

* On the influence of Test Smells on Test Coverage

* On the interplay between software testing and evolution and its effect on program comprehension
* On the test smells detection: an empirical study on the jnose test accuracy

* On the use of test smells for prediction of flaky tests

* Refactoring Test Code

* Refactoring Test Smells With JUnit 5: Why Should Developers Keep Up-to-Date?

 Refactoring Test Smells: A Perspective from Open-Source Developers

* Revisiting Test Smells in Automatically Generated Tests: Limitations, Pitfalls, and Opportunities
» Scented since the beginning: On the diffuseness of test smells in automatically generated test code
* Software Unit Test Smells

 Test Smell Detection Tools: A Systematic Mapping Study

» The Relation of Test-Related Factors to Software Quality: A Case Study on Apache Systems

* The secret life of test smells-an empirical study on test smell evolution and maintenance

152 Chapter 1. Contents

https://ieeexplore.ieee.org/document/10006864/
https://arxiv.org/abs/2003.05613
https://dl.acm.org/doi/10.1145/3387940.3392189
https://ieeexplore.ieee.org/document/6405253
https://ieeexplore.ieee.org/abstract/document/8847402/
https://link.springer.com/article/10.1007/s10664-014-9313-0
https://huang.zj.cn/pdf/J13.pdf
https://repositorio.ul.pt/handle/10451/56819
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://lutpub.lut.fi/handle/10024/158751
https://dl.acm.org/doi/10.1145/3474624.3477066
https://sol.sbc.org.br/journals/index.php/jserd/article/download/1802/1807/7485
https://dl.acm.org/doi/abs/10.1145/3379597.3387453
https://dl.acm.org/doi/10.1145/3482909.3482915
https://arxiv.org/abs/2208.07574
https://ieeexplore.ieee.org/document/9463091
https://ieeexplore.ieee.org/document/8529832
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://dl.acm.org/doi/10.1145/2897010.2897016
https://dl.acm.org/doi/10.5555/3370272.3370293
https://dl.acm.org/doi/10.1145/3350768.3350775
https://link.springer.com/chapter/10.1007/978-3-540-76440-3_8
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://dl.acm.org/doi/abs/10.1145/3482909.3482916
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.5499&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/9769994/
https://dl.acm.org/doi/10.1145/3425174.3425212
https://ieeexplore.ieee.org/document/9240691
https://www.sciencedirect.com/science/article/pii/S0164121219301487?casa_token=UT0EMFzxTcQAAAAA:L9J82_15tdySkabcIMSHKPx8rVkrltOzcwgme5cIBWgT0txJENY5y-BdUmCYUoGHnoEjZJH-cYc
https://testsmells.org/
https://dl.acm.org/doi/10.1145/3463274.3463335
https://search.proquest.com/openview/c52d821a4dd6ecb046957d9d6a532ae0/1?pq-origsite=gscholar&cbl=326341
https://link.springer.com/article/10.1007/s10664-021-09969-1

Test Smells Catalog, Release 2.0

* To What Extent Can Code Quality be Improved by Eliminating Test Smells?
» Toward static test flakiness prediction: a feasibility study
» Understanding practitioners’ strategies to handle test smells: a multi-method study

e What the Smell? An Empirical Investigation on the Distribution and Severity of Test Smells in Open Source
Android Applications

¢ tsDetect: an open source test smells detection tool

» xUnit test patterns: Refactoring test code

1.2.2.17 Stinky Synchronization Syndrome

Definition:

* The failure to use proper synchronization/wait points in the GUI-based testing of web applications using tools
such as Selenium.

References:

Quality attributes
* - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

» Smells in software test code: A survey of knowledge in industry and academia

1.2.2.18 Stinky Synchronization

Definition:
* The test fails to use proper synchronization points with the system under test

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* On the Maintenance of System User Interactive Tests
* Smells in System User Interactive Tests

* Smells in software test code: A survey of knowledge in industry and academia

1.2. Dependencies 153

https://ieeexplore.ieee.org/document/9763153/
https://dl.acm.org/doi/10.1145/3472674.3473981
https://dl.acm.org/doi/10.1145/3474624.3474639
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://dl.acm.org/doi/10.1145/3368089.3417921
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060
https://orbilu.uni.lu/handle/10993/48254
https://arxiv.org/abs/2111.02317
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060

Test Smells Catalog, Release 2.0

1.2.2.19 Tests Depend On Something Outside Of The Test Suite

Definition:

* occur when there is something the test needs to be able to run but it is not mocked either because it wasn’t missed

or is not possible to mock

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Anti-Patterns In Unit Testing

1.2.2.20 The Local Hero

Definition:

* A test case that is dependent on something specific to the development environment it was written on, in order to
run. The result is that the test passes on development boxes, but fails when someone attempts to run it elsewhere.

Also Known As:

Wait and See, The Environmental Vandal

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Anti-Patterns - Digital Tapestry

Categorising Test Smells

Smells in software test code: A survey of knowledge in industry and academia
Tdd antipatterns: Local hero

Test-Driven Development: TDD Anti-Patterns

Unit Testing Anti-Patterns, Full List

Unit testing Anti-patterns catalogue

154

Chapter 1. Contents

https://completedeveloperpodcast.com/anti-patterns-in-unit-testing/
https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060
https://semaphoreci.com/blog/2014/07/10/tdd-antipatterns-local-hero.html
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue

Test Smells Catalog, Release 2.0

1.2.2.21 The Operating System Evangelist

Definition:

A unit test that relies on a specific operating system environment to be in place in order to work. A good example
would be a test case that uses the newline sequence for Windows in an assertion, only to break when run on
Linux.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Anti-Patterns - Digital Tapestry
» Categorising Test Smells
e TDD and anti-patterns - Chapter 5

e Test-Driven Development: TDD Anti-Patterns

1.2.2.22 Web-Browsing Test

Definition:
¢ To be run the test needs to establish a connection to the internet.

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

e - Refactoring

* Categorising Test Smells

1.2. Dependencies 155

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-5
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf

Test Smells Catalog, Release 2.0

1.3 Design related

1.3.1 Not using test patterns

1.3.1.1 Autogeneration

Definition:
* Auto-generated tests that test methods instead of behavior

Code Example:

public void testSetGetTimestamp() throws Exception {
// JUnitDoclet begin method setTimestamp getTimestamp
java.util.Calendar[] tests = {new GregorianCalendar(), null};

for (int i = 0; i < tests.length; i++) {
adapter.setTimestamp(tests[i]);
assertEquals(tests[i], adapter.getTimestamp());
}
// JUnitDoclet end method setTimestamp getTimestamp
}
public void testSetGetParam() throws Exception {
// JUnitDoclet begin method setParam getParam
String[] tests = {"a", "aaa", "---", "23121313", "", null};

for (int i = 0; i < tests.length; i++) {
adapter.setParam(tests[i]);
assertEquals(tests[i], adapter.getParam());

}

// JUnitDoclet end method setParam getParam

}

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Bad tests, good tests

156

Chapter 1. Contents

http://kaczanowscy.pl/books/bad_tests_good_tests.html

Test Smells Catalog, Release 2.0

1.3.1.2 Constructor Initialization

Definition:

¢ Ideally, the test suite should not have a constructor. Initialization of fields should be in the setUp() method. De-
velopers who are unaware of the purpose of setUp() method would give rise to this smell by defining a constructor
for the test suite.

Code Example:

public class TagEncodingTest extends BrambleTestCase {
private final CryptoComponent crypto;
private final SecretKey tagKey;
private final long streamNumber = 1234567890;

public TagEncodingTest() {
crypto = new CryptoComponentImpl (new TestSecureRandomProvider());
tagKey = TestUtils.getSecretKey(Q);

}

@Test
public void testKeyAffectsTag() throws Exception {
Set set = new HashSet<>();
for (int i = 0; 1 < 100; i++) {
byte[] tag = new byte[TAG_LENGTH];
SecretKey tagKey = TestUtils.getSecretKey();
crypto.encodeTag(tag, tagKey, PROTOCOL_VERSION, streamNumber);
assertTrue(set.add(new Bytes(tag)));

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* A survey on test practitioners’ awareness of test smells

* An Exploratory Study on the Refactoring of Unit Test Files in Android Applications

» Automatic Identification of High-Impact Bug Report by Product and Test Code Quality
* Automatic generation of smell-free unit tests

» Developers perception on the severity of test smells: an empirical study

* Handling Test Smells in Python: Results from a Mixed-Method Study

* How are test smells treated in the wild? A tale of two empirical studies

* On the Distribution of “Simple Stupid Bugs” in Unit Test Files: An Exploratory Study

1.3. Design related 157

https://arxiv.org/abs/2003.05613
https://dl.acm.org/doi/10.1145/3387940.3392189
https://huang.zj.cn/pdf/J13.pdf
https://repositorio.ul.pt/handle/10451/56819
https://arxiv.org/abs/2107.13902
https://dl.acm.org/doi/10.1145/3474624.3477066
https://sol.sbc.org.br/journals/index.php/jserd/article/download/1802/1807/7485
https://ieeexplore.ieee.org/document/9463091

Tes

t Smells Catalog, Release 2.0

1.3.

* On the diffusion of test smells and their relationship with test code quality of Java projects
* On the distribution of test smells in open source Android applications: an exploratory study
* On the influence of Test Smells on Test Coverage

* On the test smells detection: an empirical study on the jnose test accuracy

* On the use of test smells for prediction of flaky tests

* PyNose: A Test Smell Detector For Python

* Software Unit Test Smells

¢ Test Smell Detection Tools: A Systematic Mapping Study

* The secret life of test smells-an empirical study on test smell evolution and maintenance

* Understanding Testability and Test Smells

e What the Smell? An Empirical Investigation on the Distribution and Severity of Test Smells in Open Source
Android Applications

¢ tsDetect: an open source test smells detection tool

1.3 Contortionist Testing

Definition:

* this is really a design smell. You’re probably adding tests after the code was written and are required to bend
over backwards to construct those tests owing to poorly designed code. This especially involves NEEDing to use
mocking of static functions or types.

References:

Quality attributes

¢ - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

1.3.

¢ Test Smells - The Coding Craftsman

1.4 Disorder

Definition:

* The sequence of elements within a module does not conform to a given order. A preferred ordering could be:
1. imports

module parameters

data types

port types

component types

A O

templates

158

Chapter 1. Contents

https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://dl.acm.org/doi/10.5555/3370272.3370293
https://dl.acm.org/doi/10.1145/3350768.3350775
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://dl.acm.org/doi/abs/10.1145/3482909.3482916
https://ieeexplore.ieee.org/document/9678615/
https://testsmells.org/
https://dl.acm.org/doi/10.1145/3463274.3463335
https://link.springer.com/article/10.1007/s10664-021-09969-1
https://www.designite-tools.com/blog/understanding-testability-test-smells
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://dl.acm.org/doi/10.1145/3368089.3417921
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

7. functions
8. altsteps

9. test cases
10. control part

Code Example:

function £ {
//...
3

type record exampleRecordType {
/] ..
3

template exampleRecordType t := {
/). ..
}

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.3.1.5 I'LI Believe It When | See Some Flashing Guis

Definition:

* An unhealthy fixation/obsession with testing the app via its GUI ‘just like a real user’. Testing business rules
through the GUI is a terrible form of coupling. If you write thousands of tests through the GUI, and then change
your GUI, thousands of tests break. Rather, test only GUI things through the GUI, and couple the GUI to a
dummy system instead of the real system, when you run those tests. Test business rules through an API that
doesn’t involve the GUIL.

References:

Quality attributes
e - Code Example
¢ - Cause and Effect

* - Frequency

1.3. Design related 159

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

e - Refactoring

* Anti-Patterns - Digital Tapestry

¢ Unit testing Anti-patterns catalogue

1.3.1.6 Missing Log

Definition:

* setverdict is used with verdict inconc or fail, but without calling log. Inconclusive or unsuccessful test verdicts
should be logged, because this helps discovering the reasons for the failure. However, this smell should be
classified weak compared to other smells.

Code Example:

testcase exampleTestCase () runs on ExampleComponent {
timer t_guard;
//...
t_guard.start(10.0);
alt {
[1 pt.receive(a_MessageOne) {
t_guard.stop
setverdict(pass)
pt.send(a_MessageTwo) ;
}
[1 any port.receive {
repeat;
}
[1 t_guard.timeout {
setverdict(fail)
stop;
}
}
}

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

* Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

160 Chapter 1. Contents

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

1.3.1.7 Narcissistic

Definition:
* The test uses the first person pronoun “I” to refer to its actors and does not uniquely qualify those actors

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* On the Maintenance of System User Interactive Tests

e Smells in System User Interactive Tests

1.3.1.8 No Clear Structure Within The Test

Definition:
* Having no consistent test structure, harming readability

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Anti-patterns of automated testing

1.3.1.9 No Structure When Creating Test Cases

Definition:

* Test code is also code and should have a structure to it so that it can be easily read and altered if needed. Not
having a structure to test code makes it hard to understand and maintain. A simple structure is to organize the
code into the different stages of the testing process.

References:

Quality attributes
* - Code Example
¢ - Cause and Effect

* - Frequency

1.3. Design related 161

https://orbilu.uni.lu/handle/10993/48254
https://arxiv.org/abs/2111.02317
https://medium.com/swlh/anti-patterns-of-automated-software-testing-b396283a4cb6

Test Smells Catalog, Release 2.0

e - Refactoring

* Anti-Patterns In Unit Testing

1.3.1.10 Not Using Page-Objects

Definition:

» Page objects are just a design pattern to ensure automated Ul tests use reusable, modular code. Not using them,
eg, writing WebDriver code directly in step definitions, means any changes to your UI will require updates in
lots of different places instead of the one ‘page’ class.

Code Example:

[When(@'I buy some '(.*)' tea')l]

public void WhenIBuySomeTea(string typeOfTea)

{
Driver.FindElement (By.Id('tea-'+typeOfTea)).Click(Q);
Driver.FindElement (By.Id('buy')).Click();

}

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

» Five automated acceptance test anti-patterns

1.3.1.11 So The Automation Tool Wrote This Crap

Definition:

* where the code of the test was ejected out of the guts of a code-generator built from a test GUI. This may not
be a real issue, if the code isn’t then modified and updated. However, if this code is actively developed, then
de-robotise it.

References:

Quality attributes
e - Code Example
- Cause and Effect
* - Frequency

* - Refactoring

 Test Smells - The Coding Craftsman

162 Chapter 1. Contents

https://completedeveloperpodcast.com/anti-patterns-in-unit-testing/
https://alisterbscott.com/2015/01/20/five-automated-acceptance-test-anti-patterns/
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.3.1.12 Test::Class Hierarchy

Definition:
* When test classes are not independent and test methods are inherited
Code Example:

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

e Test::Class Hierarchy Is an Antipattern

1.3.1.13 Testing Business Rules Through Ui

Definition:
* business rules should be tested regardless of the UI being used. Of course, end-to-end testing is an exception

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Anti-patterns of automated testing

1.3.1.14 The Turing Test

Definition:

* A testcase automagically generated by some expensive tool that has many, many asserts gleaned from the class
under test using some too-clever-by-half data flow analysis. Lulls developers into a false sense of confidence that
their code is well tested, absolving them from the responsibility of designing and maintaining high quality tests.
If the machine can write the tests for you, why can’t it pull its finger out and write the app itself!

References:

Quality attributes
e - Code Example

e - Cause and Effect

1.3. Design related 163

https://culturedperl.com/test-class-hierarchy-is-an-antipattern-391c6ef1e491
https://medium.com/swlh/anti-patterns-of-automated-software-testing-b396283a4cb6

Test Smells Catalog, Release 2.0

* - Frequency

* - Refactoring

¢ Unit testing Anti-patterns catalogue

1.3.1.15 Unclassified Method Category

Definition:

A test method that is not organized by a method category.

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Rule-based Assessment of Test Quality

Test Smell Detection Tools: A Systematic Mapping Study

1.3.1.16 Undefined Test

Definition:

It occurs when the name of a test method is not prefixed with “test”.

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Handling Test Smells in Python: Results from a Mixed-Method Study
TEMPY: Test Smell Detector for Python

164

Chapter 1. Contents

https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335
https://dl.acm.org/doi/10.1145/3474624.3477066
https://dl.acm.org/doi/10.1145/3555228.3555280

Test Smells Catalog, Release 2.0

1.3.1.17 Unknown Test

Definition:

¢ An assertion statement is used to declare an expected boolean condition for a test method. By examining the
assertion statement it is possible to understand the purpose of the test method. However, It is possible for a test
method to written sans an assertion statement, in such an instance JUnit will show the test method as passing
if the statements within the test method did not result in an exception, when executed. New developers to the
project will find it difficult in understanding the purpose of such test methods (more so if the name of the test

method is not descriptive enough).

Code Example:

@Test
public void hitGetPOICategoriesApi() throws Exception {
POICategories poiCategories = apiClient.getPOICategories(16);
for (POICategory category : poiCategories) {
System.out.println(category.name() + ": "

}

+ category);

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

e - Refactoring

* An Exploratory Study on the Refactoring of Unit Test Files in Android Applications

* Automatic Identification of High-Impact Bug Report by Product and Test Code Quality

* Automatic generation of smell-free unit tests

e Characterizing High-Quality Test Methods: A First Empirical Study

* Developers perception on the severity of test smells: an empirical study

* Handling Test Smells in Python: Results from a Mixed-Method Study

* Investigating Test Smells in JavaScript Test Code

* On the Distribution of “Simple Stupid Bugs” in Unit Test Files: An Exploratory Study

* On the diffusion of test smells and their relationship with test code quality of Java projects
* On the distribution of test smells in open source Android applications: an exploratory study
* On the influence of Test Smells on Test Coverage

* On the test smells detection: an empirical study on the jnose test accuracy

* On the use of test smells for prediction of flaky tests

* PyNose: A Test Smell Detector For Python

* Pytest-Smell: a smell detection tool for Python unit tests

¢ Software Unit Test Smells

1.3. Design related

165

https://dl.acm.org/doi/10.1145/3387940.3392189
https://huang.zj.cn/pdf/J13.pdf
https://repositorio.ul.pt/handle/10451/56819
https://ieeexplore.ieee.org/document/9796158/
https://arxiv.org/abs/2107.13902
https://dl.acm.org/doi/10.1145/3474624.3477066
https://dl.acm.org/doi/10.1145/3482909.3482915
https://ieeexplore.ieee.org/document/9463091
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://dl.acm.org/doi/10.5555/3370272.3370293
https://dl.acm.org/doi/10.1145/3350768.3350775
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://dl.acm.org/doi/abs/10.1145/3482909.3482916
https://ieeexplore.ieee.org/document/9678615/
https://dl.acm.org/doi/10.1145/3533767.3543290
https://testsmells.org/

Test Smells Catalog, Release 2.0

e TEMPY: Test Smell Detector for Python

* Test Smell Detection Tools: A Systematic Mapping Study

* The secret life of test smells-an empirical study on test smell evolution and maintenance
* Understanding practitioners’ strategies to handle test smells: a multi-method study

e What the Smell? An Empirical Investigation on the Distribution and Severity of Test Smells in Open Source
Android Applications

¢ tsDetect: an open source test smells detection tool

1.4 Issues in test steps

1.4.1 Issues in assertions

1.4.1.1 7 Layer Testing

Definition:

¢ Numerous tests depend on the functionality of a single unit, typically incidentally. A single change in the code
often breaks many tests in the build. Often exhibits itself when a team finds that even trivial changes to a system
results in exorbitant effort to get back to a green build.

Code Example:

// Subject under test
var _ = require('lodash')
function annualProfit (year) {
return _.sumBy(_.range(l, 13), function (month) {
return monthlyProfit(year, month)

i)
¥

function monthlyProfit (year, month) {
return _.sumBy(_.range(1l, 32), function (day) {
return dailyProfit(year, month, day)
b
}

function dailyProfit (year, month, day) {
var transactions = repo.find({year: year, month: month, day: day})
return _.sumBy(transactions, function (transaction) {
return transactionProfit(transaction)
19)
}

function transactionProfit (transaction) {
return Math.round(transaction.price - transaction.cost)

}

// Test
module.exports = {
computesAnnualProfit: function () {
(continues on next page)

166 Chapter 1. Contents

https://dl.acm.org/doi/10.1145/3555228.3555280
https://dl.acm.org/doi/10.1145/3463274.3463335
https://link.springer.com/article/10.1007/s10664-021-09969-1
https://dl.acm.org/doi/10.1145/3474624.3474639
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://dl.acm.org/doi/10.1145/3368089.3417921

Test Smells Catalog, Release 2.0

repo.saveTransactions ([
{year: 2016, month: 3, day: 14, price: 55.44, cost: 80.30},
{year: 2016, month: 6, day: 20, price: 9.33, cost: 4.00},
{year: 2016, month: 12, day: 31, price: 112.48, cost: 100.24},
// Bad year:
{year: 2015, month: 3, day: 14, price: 999, cost: 0}

D

var result = annualProfit(2016)

assert.equal (result, -8)
e
computesMonthlyProfit: function () {
repo.saveTransactions ([
{year: 2016, month: 5, day: 1, price: 108.99, cost: 70.45},
{year: 2016, month: 5, day: 15, price: 208.13, cost: 133.55},
{year: 2016, month: 5, day: 31, price: 90.00, cost: 80.03},
// Bad month:
{year: 2016, month: 6, day: 14, price: 999, cost: 0}
D

var result = monthlyProfit(2016, 5)

assert.equal (result, 124)
e
computesDailyProfit: function () {
repo.saveTransactions ([
{year: 2016, month: 5, day: 12, price: 19.44, cost: 18.11},
{year: 2016, month: 5, day: 12, price: 21.40, cost: 22.01},
{year: 2016, month: 5, day: 12, price: 998.10, cost: 907.20},
// Bad day:
{year: 2016, month: 5, day: 1, price: 999, cost: 0}
D

var result = dailyProfit(2016, 5, 12)

assert.equal (result, 91)
}1

computesTransactionProfit: function () {
var transaction = {price: 33.22, cost: 20.11}

var result = transactionProfit(transaction)

assert.equal(result, 13)
Yo
afterEach: function (O {
repo.reset()
}
}

// Fake production implementations to simplify example test of subject
var repo = {

(continued from previous page)

(continues on next page)

1.4. Issues in test steps

167

Test Smells Catalog, Release 2.0

__transactions: [],
reset: function () {
repo.__transactions = []
e
saveTransactions: function (transactions) {
repo.__transactions.push.apply(repo.__transactions, transactions)
e

find: function (criteria) {

(continued from previous page)

return _.filter(repo.__transactions, criteria)
}
}
References:
Quality attributes

* - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

» A workbook repository of example test smells and what to do about them

1.4.1.2 Asserting Pre-Condition And Invariants

Definition:

 Using the same API to express pre-conditions (i.e. argument validation), post-conditions, invariants, and asser-

tions.

Code Example:

public void Parse(string input) {

// pre-condition

Debug.Assert(input != null, "invalid argument");
// invariant

Debug.Assert(condition, "this should not happen");

}
References:
Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency
e - Refactoring
168 Chapter 1. Contents

https://github.com/testdouble/test-smells

Test Smells Catalog, Release 2.0

» Parameterized Test Patterns For Effective Testing with Pex

1.4.1.3 Assertion Diversion

Definition:
* Where the wrong sort of assert is used, thus making a test failure harder to understand

Code Example:

Boolean isValid = false;

if (actualResult.contains("foo")) {
isValid = true;

}

assertEquals(true, isValid)

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Test Smells - The Coding Craftsman

1.4.1.4 Assertion Mismatch Scenario

Definition:

* Test cases that do not correctly assert the expected behavior given program specifications.
Code Example:

* No code examples yet...

References:

Quality attributes
* - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* Improving Student Testing Practices through a Lightweight Checklist Intervention.

1.4. Issues in test steps 169

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.6145&rep=rep1&type=pdf
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://repository.lib.ncsu.edu/bitstream/handle/1840.20/39743/etd.pdf?sequence=1

Test Smells Catalog, Release 2.0

1.4.1.5 Assertion-Free

Definition:

¢ A test case without assertion

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* An Empirical Study into the Relationship Between Class Features and Test Smells

1.4.1.6 Assertionless Test

Definition:

* A test that does not contain at least one valid assertion is not a real test as it does only execute plain source-code,
but never assert any data, state or functionality.

* Pretending to assert data and functionality, but does not

Also Known As:

 Lying Test, The Line Hitter, No Assertions

Code Example:

// Smalltalk

ICCreateCalendar>>TesttestCreatingSeveralCalendars

self addCalendarWithName: ’new Calendar 1’.
self addCalendarWithName: ’new Calendar 2’.
self addCalendarWithName: ’new Calendar 3’.
self addCalendarWithName: ’new Calendar 1°.
self addCalendarWithName: ’new Calendar 2’.
self addCalendarWithName: ’new Calendar 3’.

References:

Quality attributes

e - Code Example
e - Cause and Effect
* - Frequency

e - Refactoring

* Assessing test quality - TestLint

* Rule-based Assessment of Test Quality

170

Chapter 1. Contents

https://ieeexplore.ieee.org/document/7890581
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.9594
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf

Test Smells Catalog, Release 2.0

Test Smell Detection Tools: A Systematic Mapping Study

Test Smell Detection Tools: A Systematic Mapping Study

TestQ: Exploring Structural and Maintenance Characteristics of Unit Test Suites

¢ What We Know About Smells in Software Test Code

1.4.1.7 Assertions Should Be Merciless

Definition:
* Tests whose assertions do not prove the test method works correctly

Code Example:

@Test

public void shouldRemoveEmailsByState() {
//given
Email pending = createAndSaveEmail ("pending","content pending",
"abc@def.com", Email.PENDING);
Email failed = createAndSaveEmail("failed","content failed",
"abc@def.com", Email.FAILED);
Email sent = createAndSaveEmail("sent
"abc@def.com", Email.SENT);
//when
emailDAO.removeByState(Email.FAILED) ;
//then
assertThat (emailDAO.findAl11()).doesNotContain(failed);

,"'content sent",

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Bad tests, good tests

1.4.1.8 Blinkered Assertions

Definition:

» where the assertions are blind to the fact that the whole answer is wrong, because they’re focusing on a subset of
the detail.

References:

Quality attributes
* - Code Example

1.4. Issues in test steps 171

https://dl.acm.org/doi/10.1145/3463274.3463335
https://dl.acm.org/doi/10.1145/3463274.3463335
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.6409&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/8501942
http://kaczanowscy.pl/books/bad_tests_good_tests.html

Test Smells Catalog, Release 2.0

e - Cause and Effect

* - Frequency

- Refactoring

o Test Smells -

The Coding Craftsman

1.4.1.9 Brittle Assertion

Definition:

* A test method that has assertions that check data input

References:

Quality attributes

¢ - Code Example

¢ - Cause and Effect

* - Frequency

¢ - Refactoring

* Automatic generation of smell-free unit tests

Test Smell Detection Tools: A Systematic Mapping Study

1.4.1.10 Brittle Test

Definition:

Ul tests containing procedural test code, duplicated steps and magic values

Also Known As:
* Fragile Test
Code Example:

class BrittleTest

{
[Test]

public void Can_buy_an_Album_when_registered()

{

var driver = Host.Instance.Application.Browser;

driver.
driver.
.FindElement (By.LinkText("Register")).Click();
driver.
driver.
driver.
driver.
.FindElement (By.Id("ConfirmPassword")).Clear();
driver.

driver

driver

Navigate().GoToUrl(driver.Url);
FindElement (By.LinkText ("Admin")).Click();

FindElement (By.Id("UserName")).Clear();

FindElement (By.Id("UserName")) .SendKeys("HJSimpson");
FindElement (By.Id("Password")).Clear();

FindElement (By.Id("Password")).SendKeys("!2345Qwert");

FindElement (By.Id("ConfirmPassword")) .SendKeys("!2345Quwert");

(continues on next page)

172

Chapter 1. Contents

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://repositorio.ul.pt/handle/10451/56819
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.
driver.FindElement (By.

(continued from previous page)
CssSelector("input[type=\"submit\"]1")).Click();
LinkText("Disco")).Click();
CssSelector("img[alt=\"Le Freak\"]")).Click(Q);
LinkText("Add to cart")).Click(Q);

LinkText ("Checkout >>")).Click(Q);
Id("FirstName")) .Clear();

Id("FirstName")) .SendKeys('Homer");
Id("LastName")).Clear();

Id("LastName")) .SendKeys("Simpson");
Id("Address")).Clear();

Id("Address")) .SendKeys("742 Evergreen Terrace");
Id("City")).Clear();
Id("City")).SendKeys("Springfield");
Id("State")).Clear();
Id("State")).SendKeys("Kentucky");
Id("PostalCode™)).Clear();

Id("PostalCode")) .SendKeys("123456");
Id("Country")).Clear(Q;
Id("Country")).SendKeys("United States");
Id("Phone")).Clear();
Id("Phone")).SendKeys(''2341231241");
Id("Email")).Clear();

Id("Email™)) .SendKeys("chunkylover53@aol.com");
Id("PromoCode")) .Clear();

Id("PromoCode")) .SendKeys("FREE");
CssSelector("input[type=\"submit\"]")).Click();

Assert.IsTrue(driver.PageSource.Contains("Checkout Complete"));

}
}
References:
Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency
¢ - Refactoring

Maintainable automated ui tests

Smells of Testing (signs your tests are bad)

1.4. Issues in test steps

173

https://code.tutsplus.com/articles/maintainable-automated-ui-tests--net-35089
https://jakescruggs.blogspot.com/2009/04/smells-of-testing-signs-your-tests-are.html

Test Smells Catalog, Release 2.0

1.4.1.11 Brittle Ui Tests

Definition:

* Tests having fixed delays, bad selectors and targeting elements, and difficult investigating failures

Code Example:

driver.Url = "http://somedomain/url_that_delays_loading";

Thread.Sleep(5000);
IWebElement myDynamicElement = driver.FindElement (By.Id("someDynamicElement"));

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Tips to avoid brittle ui tests

1.4.1.12 Broad Assertion

Definition:

» Assertions that do not compare exact content and are, therefore, broad

Code Example:

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Developer test anti-patterns by lasse koskela

174

Chapter 1. Contents

https://code.tutsplus.com/tutorials/tips-to-avoid-brittle-ui-tests--net-35188
https://www.youtube.com/watch?v=3Fa69eQ6XgM

Test Smells Catalog, Release 2.0

1.4.1.13 Bumbling Assertions

Definition:

* Where there was a more articulate assertion available, but we chose a less sophisticated one and kind of got the
message across. E.g. testing exceptions the hard way, or using equality check on list size, rather than a list size
assertion.

Code Example:

Optional<Foo> result = service.getFoos(123);
assertNotNull (result);
assertThat(result).isNotEmpty(Q);
assertThat(result.getBar()).isNotNull(Q);
assertThat(result.getBar()).hasSize(1);
assertThat(result.getBar().get(0)).isEqualTo("buzz");

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

Test Smells - The Coding Craftsman

1.4.1.14 Calculating Expected Results On The Fly

Definition:

* Any automated test that performs a comparison needs to know the expected results. If you believe that automat-
ically calculating expected results is for you then I would at least consider separating the code that calculates the
expected results from the code that performs the actual test.

Code Example:
public void CheckWeightCategory_Versionl()
{
// For each item in the file, check it has been labelled correctly
foreach (Item currentItem in testFile)
{
// Navigate to the item tracking page on the website
selenium.Open("/ItemTrackingPage.html");
// Get the weight category for the current item
string acutalWeightCategory = selenium.GetText("weightCategory" + currentItem.
~ID);

// Calculate the expected result
string expectedWeightCategory;

(continues on next page)

1.4. Issues in test steps 175

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

(continued from previous page)

// If an item weighs more than 50kg then mark the item as a two-man 1ift,

// otherwise mark the item as a one-man lift
if (currentItem.weight > 50)

{

expectedifeightCategory = "two-man lift";
}
else
{

expectedifeightCategory = "one-man lift";
}

// Compare actual to expected result

Assert.AreEqual (acutalWeightCategory, expectedWeightCategory);

References:

Quality attributes

e - Code Example

- Cause and Effect
- Frequency

- Refactoring

How test automation with selenium can fail

1.4.1.15 Celery Data

Definition:

» where the data read from the system under test is in a format which is hard to make meaningful assertions on —

for example raw JSON Strings.

References:

Quality attributes

* - Code Example

- Cause and Effect
- Frequency

- Refactoring

Test Smells - The Coding Craftsman

176

Chapter 1. Contents

https://mattarcherblog.wordpress.com/2010/11/29/how-test-automation-with-selenium-or-watir-can-fail/
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.4.1.16 Circumstantial Evidence

Definition:
* where the assertions are looking at things which are not direct proof of the behaviour

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Test Smells - The Coding Craftsman

1.4.1.17 Commented Code In The Test

Definition:

* The test passes but some assertions or parts of the setup, which would cause a test failure, are commented out
Also Known As:

* Under-the-carpet Failing Assertion

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

 Categorising Test Smells

Smells of Testing (signs your tests are bad)

1.4.1.18 Commented Test

Definition:
* Test contents are commented so that it passes

Code Example:

class SystemAdminSmokeTest extends GroovyTestCase {
void testSmoke() {
// do not remove below code
// def ds = new org.h2. jdbcx.JdbcDataSource(

(continues on next page)

1.4. Issues in test steps 177

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://jakescruggs.blogspot.com/2009/04/smells-of-testing-signs-your-tests-are.html

Test Smells Catalog, Release 2.0

(continued from previous page)

// URL: 'jdbc:h2:mem:test;DB_CLOSE_DELAY=-1;MODE=0Oracle’,
// user: 'sa', password: ")

//

// def jpaProperties = new Properties()

// jpaProperties.setProperty(

// 'hibernate.cache.use_second_level_cache', 'false')

// jpaProperties.setProperty(

// 'hibernate.cache.use_query_cache', 'false')

//

// def emf = new LocalContainerEntityManagerFactoryBean(
// dataSource: ds, persistenceUnitName: ‘my-domain',

// jpaVendorAdapter: new HibernateJpaVendorAdapter(

// database: Database.H2, showSql: true,

// generateDdl: true), jpaProperties: jpaProperties)

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

* Bad tests, good tests

1.4.1.19 Complex Assertions

Definition:

* The assertions in a test require many lines of code to implement. At first blush, since test-scoped logic is typically
itself untested, this can be risky. Additionally, multi-line assertions are typically harder to read—both in terms
of what they’re doing and what they intend to say about the subject’s behavior.

Code Example:

// Subject under test
var _ = require('lodash')
function incrementAge (people) {
return _(_.cloneDeep(people)).map(function (person) {
if (_.isNumber(person.age)) {
person.age += 1
}
if (_.isArray(person.kids)) {
person.kids = incrementAge(person.kids)
}
return person
(continues on next page)

178 Chapter 1. Contents

http://kaczanowscy.pl/books/bad_tests_good_tests.html

Test Smells Catalog, Release 2.0

(continued from previous page)
}) .shuffle().value()
}

// Test
module.exports = {
incrementsSinglePersonAge: function () {
var people = [
{name: 'Jane', age: 39},
{name: 'John', age: 99}
]

var results = incrementAge(people)

var jane = _.find(results, function (person) { return person.name === 'Jane' })
assert.equal (jane.age, 40)
var john = _.find(results, function (person) { return person.name === 'John' })
assert.equal (john.age, 100)

Fo
incrementsKidsAgeToo: function () {
var people = [

{
name: 'Joe',
age: 42,
kids: [

{name: 'Jack', age: 8},
{name: 'Jill', age: 7}
1
]

var results = incrementAge(people)

var jack = _.find(results[0].kids, function (person) {
return person.name === 'Jack'
b
assert.equal (jack.age, 9)
var jill = _.find(results[0].kids, function (person) {
return person.name === "'Jill'
b
assert.equal(jill.age, 8)
}
}
References:
Quality attributes

¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* A workbook repository of example test smells and what to do about them

1.4. Issues in test steps 179

https://github.com/testdouble/test-smells

Test Smells Catalog, Release 2.0

1.4.1.20 Conspiracy Of Silence

Definition:
* When assertions in tests are failing with almost no clue why

Code Example:

Expected: true
Actual: false

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

e Anti-patterns in test automation

1.4.1.21 Early Returning Test

Definition:
* A test method that returns a value too early which may drop assertions

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Rule-based Assessment of Test Quality

Test Smell Detection Tools: A Systematic Mapping Study

1.4.1.22 Equality Sledgehammer Assertion

Definition:

¢ where the interesting behaviour we are trying to prove is a subset of asserting the equality of everything, for
example just knowing the count would be enough, but we assert all values in all rows — don’t go too far, through,
and end up with a Blinkered Assertion — the likely cause of this smell is lack of imagination when writing an
assertion and just landing on equals

180 Chapter 1. Contents

https://www.codementor.io/@mgawinecki/anti-patterns-in-test-automation-101c6vm5jz
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

* - Refactoring

Test Smells - The Coding Craftsman

1.4.1.23 Fantasy Tests

Definition:

* Passing tests of code that wouldn’t actually work in production, usually as a result of a stub returning a response
that’s substantially different from how a real instance would behave.

Code Example:

Subject under test
class Authorizer
def initialize(authenticator)
@authenticator = authenticator
end

def roles(user, password)
if @authenticator.login(user: user, password: password)
["admin", "developer", "manager"]
else
[]
end
end
end

Test
class Fantasy < SmellTest
def setup
@authenticator = Minitest::Mock.new(Authenticator.new)
@subject = Authorizer.new(@authenticator)
super
end

def test_all_roles_if_ authenticated
@authenticator.expect(:login, true, [{user: "hi", password: "bye"}])

result = @subject.roles("hi", "bye")

assert_equal ["admin", "developer", "manager"], result
end

def test_no_roles_if not_authenticated
(continues on next page)

1.4. Issues in test steps 181

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

(continued from previous page)

@authenticator.expect(:login, false, [{user: "hi", password: "no!"}])
result = @subject.roles("hi", "no!")

assert_equal [], result
end
end

Fake production implementations to simplify example test of subject
class Authenticator
def login(credentials)
if !credentials[:password] || !credentials[:"2fa"]
raise "Both password and two-factor auth token are now required
end
return true
end
end

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

* A workbook repository of example test smells and what to do about them

* Smells in software test code: A survey of knowledge in industry and academia

1.4.1.24 Fragile Test

Definition:

* Tests which seem to break when they shouldn’t
Also Known As:

* Brittle Test

Code Example:

describe Post do
let(:user) { build_stubbed(:user) }
let(:title) { "Example Post" }
subject(:post) { build_stubbed(:post, user: user, title: title) }

context "with an author" do

let(:user) { build_stubbed(:user, name: "Willy") }

(continues on next page)

182 Chapter 1. Contents

https://github.com/testdouble/test-smells
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060

Test Smells Catalog, Release 2.0

(continued from previous page)

it "returns the author's name" do
expect (post.author_name).to eq('Willy")
end
end
end

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

* Inspecting Automated Test Code: A Preliminary Study

1.4.1.25 Fuzzy Assertions

Definition:

* Where lack of control for the system under test, causes us not to be able to predict the exact outcome, leading to
fuzzy or partial matching in our assertions

Code Example:

readUser = system.retrieveUser(id)

//fuzzy match
assert(user) .matches([
{ obj.firstName == 'John' },
{ obj.lastName == 'Smith' },
{ obj.id instanceof UUID },
{ obj.creationDate - now() < inSeconds(5) }

D

References:

Quality attributes
* - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

e Test Smells - The Coding Craftsman

1.4. Issues in test steps 183

https://dl.acm.org/doi/abs/10.5555/1768961.1768982
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.4.1.26 Happenstance Testing

Definition:

* where assertions are trying to lock down implementation details that are not directly important and might validly
change, for example the exact wording of an exception

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Test Smells - The Coding Craftsman

1.4.1.27 Inadequate Assertion

Definition:

» Every update to the execution state must eventually be verified in the assertions. In principle, assertions should
verify the correctness of all updates to the object/program state, otherwise the strength of the test oracles is
considered not enough to guard the program against faults.

Code Example:

public class ClassUnderTest{
private int datal;
private int data2;
public int getDatal() { return datal;}
public int getData2() { return data2;}

public void methodl(int flag){
if(flag>0){
this.data2 = 2; //define data2

}
this.datal = 4; //define datal

public class ClassUnderTest extends TestCase{
public void testMethodl(){
ClassUnderTest cut = new ClassUnderTest;
int testInput = 1;
cut.methodl(testInput);

assertTrue(cut.getDatal()==4); // Is this assertion adequate enough?

References:

Quality attributes

184 Chapter 1. Contents

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* On adequacy of assertions in automated test suites: an empirical investigation

1.4.1.28 Inappropriate Assertions

Definition:

* An inappropriate assertion is being used. For example, assertTrue is used to check the equality of values instead
of assertEquals.

Also Known As:
* Wrong Assert

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

 Categorising Test Smells

1.4.1.29 Incidental Coverage

Definition:

* Is it enough to know that your test suite encounters every line of code? Or don’t you want to be sure that it
exercises every line? If you simply encounter the line without asserting that it produces the correct results, are
you any better off?

Code Example:

require .dirname(__FILE__) + '/../test_helper’

class ProductsControllerTest <
def test_should_get_index
get :index
end

... remaining tests omitted
end

References:

1.4. Issues in test steps 185

https://ieeexplore.ieee.org/abstract/document/6571656
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf

Test Smells Catalog, Release 2.0

Quality attributes
e - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* Testing anti-patterns: How to fail with 100% test coverage

1.4.1.30 Invisible Assertions

Definition:

A test which lacks any explicit assertions, leading future readers in the potentially frustrating position of puzzling
over the intention of the test.

Code Example:

require "helper"

Subject under test
def is_217?(person)
if person.age < 21
raise "Sorry, adults only
end
end

Test
class InvisibleAssertions <
def test_is_21
person = .new(age: 21)

is_217?(person)
end

def test_is_under_age
person = .new(age: 20)

assert_raises { is_21?(person) }
end
end

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

186 Chapter 1. Contents

https://jasonrudolph.com/blog/testing-anti-patterns-how-to-fail-with-100-test-coverage/

Test Smells Catalog, Release 2.0

* A workbook repository of example test smells and what to do about them

1.4.1.31 Likely Ineffective Object-Comparison

Definition:
* A test that performs a comparison between objects will never fail.

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Automatic generation of smell-free unit tests

* Rule-based Assessment of Test Quality

Test Smell Detection Tools: A Systematic Mapping Study

1.4.1.32 Line Hitter

Definition:

At first glance, the tests cover everything and code coverage tools confirm it with 100%, but in reality the tests
merely hit the code, without doing any output analysis.

Also Known As:
¢ Assertionless Test

References:

Quality attributes
* - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

 Unit Testing Anti-Patterns, Full List

* Unit testing Anti-patterns catalogue

1.4. Issues in test steps 187

https://github.com/testdouble/test-smells
https://repositorio.ul.pt/handle/10451/56819
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue

Test Smells Catalog, Release 2.0

1.4.1.33 Martini Assertion

Definition:

* where we look for the desired outcome anytime, any place, anywhere — often caused by Celery Data and in some
ways the opposite of the Equality Sledgehammer. Rather than look at a specific field to see if it’s right, we look
for some data in the WHOLE output.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

Test Smells - The Coding Craftsman

1.4.1.34 Missed Fail Rotten Green Test

Definition:

» Tests where the test engineer passes to an assertion primitive to force the test to fail. Such assertion calls are
intended to be executed only if something goes wrong, and not if the test passes.

Code Example:

@Test

public void testMethod() {
MyClass obj = new MyClass(Q);
int expected = 5;
int actual = obj.doSomething();
assertTrue(actual > 0);
assertFalse(actual > 10);
fail("Something went wrong");

}

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* RTj: a Java framework for detecting and refactoring rotten green test cases

* Rotten green tests in Java, Pharo and Python

188 Chapter 1. Contents

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://dl.acm.org/doi/10.1145/3377812.3382151
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s10664-021-10016-2&casa_token=8C-rVSu9l74AAAAA:2s5rmzBFiH74xHZlTdpZsQCxwqL4cYIbWRH6Bdq1ehTjnxcpOwi8PPkhDrhKpHqjdrQf1_ZXaVRy5BysSQ

Test Smells Catalog, Release 2.0

1.4.1.35 Missing Assertions

Definition:
* The subject includes behavior which is not asserted by the test, whether implicitly or explicitly.
* The test method consists of an empty block

Code Example:

public void testSomething() {
// TODO
}

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* A workbook repository of example test smells and what to do about them
* JUnit Anti-patterns
* On the Maintenance of System User Interactive Tests

e Smells in System User Interactive Tests

1.4.1.36 Missing Test

Definition:
¢ The smell occurs when a test method does not include an assertion. This smell is also known as unknown test.

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Understanding Testability and Test Smells

1.4. Issues in test steps 189

https://github.com/testdouble/test-smells
https://exubero.com/junit/anti-patterns/
https://orbilu.uni.lu/handle/10993/48254
https://arxiv.org/abs/2111.02317
https://www.designite-tools.com/blog/understanding-testability-test-smells

Test Smells Catalog, Release 2.0

1.4.1.37 No Assertions

Definition:

* Tests that have no assertions and require the manual verification of log outputs

Also Known As:
¢ Assertionless Test

Code Example:

IResult result = format.execute();
System.out.println(result.size());
Iterator iter = result.iterator();

while (iter.hasNext()) {
IResult r = (IResult) iter.next();
System.out.println(r.getMessage());

}

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* Bad tests, good tests

» Categorising Test Smells

* Improving Student Testing Practices through a Lightweight Checklist Intervention.

* Smells of Testing (signs your tests are bad)

1.4.1.38 No Traces Left

Definition:

* Tests that, despite failing, do not produce any logs or indications of what went wrong

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

e Anti-patterns in test automation

190

Chapter 1. Contents

http://kaczanowscy.pl/books/bad_tests_good_tests.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://repository.lib.ncsu.edu/bitstream/handle/1840.20/39743/etd.pdf?sequence=1
https://jakescruggs.blogspot.com/2009/04/smells-of-testing-signs-your-tests-are.html
https://www.codementor.io/@mgawinecki/anti-patterns-in-test-automation-101c6vm5jz

Test Smells Catalog, Release 2.0

1.4.1.39 On The Fly

Definition:
 The test calculates an expected results during its execution instead of relying on pre-computed values

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* On the Maintenance of System User Interactive Tests

e Smells in System User Interactive Tests

1.4.1.40 Over Exertion Assertion

Definition:
* Where the implementation of an assertion is heavy and in the body of the test, rather than in an assertion library

Code Example:

List results = service.getFoosInOrder();

int previousOrder = results.get(0).getOrdering(Q);
for(int i=0; i= because they can sometimes be of same value
if (!(ordering>=previousOrder)) {
Assert.fail("Not in ascending order");
}
previousOrder = ordering;

¥

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

¢ Test Smells - The Coding Craftsman

1.4. Issues in test steps 191

https://orbilu.uni.lu/handle/10993/48254
https://arxiv.org/abs/2111.02317
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.4.1.41 Over-Checking

Definition:

* The test performs some assertions that are not relevant for its scope.

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* On the Maintenance of System User Interactive Tests
e Smells in System User Interactive Tests
* Test design for automation: Anti-patterns

1.4.1.42 Premature Assertions

Definition:

* Intermingled with a test’s set-up of the data and objects it depends on are assertions which attempt to ensure that
set-up was successful. The net effect of this often resembles a “Arrange-Assert-Act-Assert” pattern.

Code Example:

Subject under test
class Plane
def initialize(air_traffic_control)
@air_traffic_control = air_traffic_control
end

def take_off
if started? &&
on_airstrip? &&
@air_traffic_control.ready_for_takeoff?(self)
(rand * 1000).round
else
0
end
end
end

Test
class PrematureAssertions <
def setup
@air_traffic_control = .new
@plane = .new(@air_traffic_control)
super

(continues on next page)

192

Chapter 1. Contents

https://orbilu.uni.lu/handle/10993/48254
https://arxiv.org/abs/2111.02317
https://www.techwell.com/techwell-insights/2015/09/test-design-automation-anti-patterns

Test Smells Catalog, Release 2.0

(continued from previous page)

end

def test_take_off_when_ready
Oplane.start
assert_equal true, @plane.started?
@plane.taxi
assert_equal true, @plane.on_airstrip?
@air_traffic_control.approve(@plane)
assert_equal true, @air_traffic_control.ready_for_takeoff?(@plane)

altitude = @plane.take_off

assert altitude > 0, "altitude should be greater than 0"
end

def test_does_not_take_off when_not_ready
altitude = @plane.take_off

assert_equal 0, altitude
end
end

Fake production implementations to simplify example test of subject
class Plane
def start
@started = true
end

def started?
@started if defined?(@started)
end

def taxi
@taxied = true
end

def taxied?
@taxied
end

def on_airstrip?
taxied?
end
end

class AirTrafficControl
def approve(plane)
@approved = true
end

def ready_for_takeoff?(plane)
@approved

(continues on next page)

1.4. Issues in test steps 193

Test Smells Catalog, Release 2.0

(continued from previous page)

end
end

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* A workbook repository of example test smells and what to do about them

1.4.1.43 Primitive Assertion

Definition:
» Assertions that use primitive content to express intent

Code Example:

@Test
public void testMethod() {
MyClass obj = new MyClass();
int expected = 5;
int actual = obj.doSomething();
assertThat("Result of doSomething() should be greater than expected",
actual, greaterThan(expected));

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Developer test anti-patterns by lasse koskela

194 Chapter 1. Contents

https://github.com/testdouble/test-smells
https://www.youtube.com/watch?v=3Fa69eQ6XgM

Test Smells Catalog, Release 2.0

1.4.1.44 Redundant Assertion

Definition:

* This smell occurs when test methods contain assertion statements that are either always true or always false. A
test is intended to return a binary outcome of whether the intended result is correct or not, and should not return
the same output regardless of the input.

Code Example:

@Test
public void testTrue() {
assertEquals(true, true);

¥

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

An Exploratory Study on the Refactoring of Unit Test Files in Android Applications

Automatic Identification of High-Impact Bug Report by Product and Test Code Quality

Automatic generation of smell-free unit tests

Categorising Test Smells

Developers perception on the severity of test smells: an empirical study

Handling Test Smells in Python: Results from a Mixed-Method Study

Investigating Test Smells in JavaScript Test Code

JUnit Anti-patterns

On the Distribution of “Simple Stupid Bugs” in Unit Test Files: An Exploratory Study

On the diffusion of test smells and their relationship with test code quality of Java projects

On the distribution of test smells in open source Android applications: an exploratory study

On the influence of Test Smells on Test Coverage

On the test smells detection: an empirical study on the jnose test accuracy

On the use of test smells for prediction of flaky tests

PyNose: A Test Smell Detector For Python

Software Unit Test Smells

Test Smell Detection Tools: A Systematic Mapping Study

The secret life of test smells-an empirical study on test smell evolution and maintenance

What the Smell? An Empirical Investigation on the Distribution and Severity of Test Smells in Open Source
Android Applications

1.4. Issues in test steps 195

https://dl.acm.org/doi/10.1145/3387940.3392189
https://huang.zj.cn/pdf/J13.pdf
https://repositorio.ul.pt/handle/10451/56819
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://arxiv.org/abs/2107.13902
https://dl.acm.org/doi/10.1145/3474624.3477066
https://dl.acm.org/doi/10.1145/3482909.3482915
https://exubero.com/junit/anti-patterns/
https://ieeexplore.ieee.org/document/9463091
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://dl.acm.org/doi/10.5555/3370272.3370293
https://dl.acm.org/doi/10.1145/3350768.3350775
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://dl.acm.org/doi/abs/10.1145/3482909.3482916
https://ieeexplore.ieee.org/document/9678615/
https://testsmells.org/
https://dl.acm.org/doi/10.1145/3463274.3463335
https://link.springer.com/article/10.1007/s10664-021-09969-1
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750

Test Smells Catalog, Release 2.0

* tsDetect: an open source test smells detection tool

1.4.1.45 Returning Assertion

Definition:
¢ A test method that has an assertion and returns a value.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Automatic generation of smell-free unit tests
* Rule-based Assessment of Test Quality
e Test Smell Detection Tools: A Systematic Mapping Study

1.4.1.46 Second Guess The Calculation

Definition:

* Where rather than using concrete test data, we use something that needs us to calculate the correct answer ahead

of assertion

Code Example:

@Test
public void testCalculatePrice() {
Order order = new Order();

order.addProduct (new Product("'Product A", 10.0, 2));
order.addProduct (new Product("Product B", 5.0, 3));

double expectedPrice = 10.0 * 2 + 5.0 * 3;
double actualPrice = order.calculatePrice();

assertEquals(expectedPrice, actualPrice, 0.001);

3
References:
Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency
¢ - Refactoring
196 Chapter 1. Contents

https://dl.acm.org/doi/10.1145/3368089.3417921
https://repositorio.ul.pt/handle/10451/56819
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

* Test Smells - The Coding Craftsman

1.4.1.47 Self-Test

Definition:

* Tests that do not compare a result with an expected value, but with the result itself

Code Example:

@Test
public void shouldGetMethodsForPoland() {

}

//given
List<PaymentMethod> all = Lists.newArrayList(PaymentMethod.values());
List<PaymentMethod> methodsAvailableInPoland = Lists.newArrayList();

for (PaymentMethod method : all) {
if (method.isEligibleForCountry("PL")) {
methodsAvailableInPoland.add(method) ;
}
}

//when
List<PaymentMethod> methodsForCountry = PaymentMethod
.getMethodsForCountry("PL", all);

//then
assertThat (methodsForCountry) .isEqualTo(methodsAvailableInPoland);

References:

Quality attributes

¢ - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* Bad tests, good tests

1.4. Issues in test steps

197

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
http://kaczanowscy.pl/books/bad_tests_good_tests.html

Test Smells Catalog, Release 2.0

1.4.1.48 Sensitive Equality

Definition:

¢ Occurs when the toString method is used within a test method. Test methods verify objects by invoking the
default toString() method of the object and comparing the output against an specific string. Changes to the
implementation of toString() might result in failure. The correct approach is to implement a custom method
within the object to perform this comparison.

Also Known As:
* The Butterfly
Code Example:

@Test
public void test1() throws UnknownHostException {

String peersPacket = "F8 4E 11 F8 4B C5 36 81 " +
"CC OA 29 82 76 5F B8 40 D8 D6 OC 25 80 FA 79 5C "
"FC 03 13 EF DE BA 86 9D 21 94 E7 9E 7C B2 B5 22 "
"F7 82 FF A® 39 2C BB AB 8D 1B AC 30 12 08 B1 37 "
"E® DE 49 98 33 4F 3B CF 73 FA 11 7E F2 13 F8 74 "
"17 08 9F EA F8 4C 21 BO";

+ 4+ + 4+

byte[] payload = Hex.decode(peersPacket);
byte[] ip = decodeIP4Bytes(payload, 5);

assertEquals(InetAddress.getByAddress(ip).toString(), ("/54.204.10.41"));

References:

Quality attributes
* - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* A preliminary evaluation on the relationship among architectural and test smells

* An Empirical Study into the Relationship Between Class Features and Test Smells

* An Exploratory Study on the Refactoring of Unit Test Files in Android Applications

* An empirical analysis of the distribution of unit test smells and their impact on software maintenance
* An empirical investigation into the nature of test smells

* An exploratory study of the relationship between software test smells and fault-proneness

* Analyzing Test Smells Refactoring from a Developers Perspective

* Are test smells really harmful? An empirical study

» Assessing diffusion and perception of test smells in scala projects

198 Chapter 1. Contents

https://ieeexplore.ieee.org/document/10006864/
https://ieeexplore.ieee.org/document/7890581
https://dl.acm.org/doi/10.1145/3387940.3392189
https://ieeexplore.ieee.org/document/6405253
https://dl.acm.org/doi/10.1145/2970276.2970340
https://ieeexplore.ieee.org/abstract/document/8847402/
https://dl.acm.org/doi/10.1145/3571473.3571487
https://link.springer.com/article/10.1007/s10664-014-9313-0
https://dl.acm.org/doi/10.1109/MSR.2019.00072

Test Smells Catalog, Release 2.0

Automatic Identification of High-Impact Bug Report by Product and Test Code Quality
Automatic generation of smell-free unit tests

Categorising Test Smells

Characterizing High-Quality Test Methods: A First Empirical Study

Developers perception on the severity of test smells: an empirical study

Enhancing developers’ awareness on test suites’ quality with test smell summaries

Handling Test Smells in Python: Results from a Mixed-Method Study

Machine Learning-Based Test Smell Detection

On the Distribution of “Simple Stupid Bugs” in Unit Test Files: An Exploratory Study

On the Relation of Test Smells to Software Code Quality

On the diffusion of test smells and their relationship with test code quality of Java projects

On the diffusion of test smells in automatically generated test code: an empirical study

On the distribution of test smells in open source Android applications: an exploratory study

On the influence of Test Smells on Test Coverage

On the interplay between software testing and evolution and its effect on program comprehension
On the test smells detection: an empirical study on the jnose test accuracy

On the use of test smells for prediction of flaky tests

Refactoring Test Code

Refactoring Test Smells: A Perspective from Open-Source Developers

Revisiting Test Smells in Automatically Generated Tests: Limitations, Pitfalls, and Opportunities
Scented since the beginning: On the diffuseness of test smells in automatically generated test code
SoCRATES: Scala radar for test smells

Software Unit Test Smells

Test Smell Detection Tools: A Systematic Mapping Study

TestQ: Exploring Structural and Maintenance Characteristics of Unit Test Suites

The secret life of test smells-an empirical study on test smell evolution and maintenance

To What Extent Can Code Quality be Improved by Eliminating Test Smells?

Toward static test flakiness prediction: a feasibility study

Towards Automated Tools for Detecting Test Smells: An Empirical Investigation into the Nature of Test Smells

What the Smell? An Empirical Investigation on the Distribution and Severity of Test Smells in Open Source

Android Applications
Why do builds fail?—A conceptual replication study
tsDetect: an open source test smells detection tool

xUnit test patterns: Refactoring test code

1.4.

Issues in test steps

https://huang.zj.cn/pdf/J13.pdf
https://repositorio.ul.pt/handle/10451/56819
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/9796158/
https://arxiv.org/abs/2107.13902
https://lutpub.lut.fi/handle/10024/158751
https://dl.acm.org/doi/10.1145/3474624.3477066
https://arxiv.org/abs/2208.07574
https://ieeexplore.ieee.org/document/9463091
https://ieeexplore.ieee.org/document/8529832
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://dl.acm.org/doi/10.1145/2897010.2897016
https://dl.acm.org/doi/10.5555/3370272.3370293
https://dl.acm.org/doi/10.1145/3350768.3350775
https://link.springer.com/chapter/10.1007/978-3-540-76440-3_8
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://dl.acm.org/doi/abs/10.1145/3482909.3482916
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.5499&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3425174.3425212
https://ieeexplore.ieee.org/document/9240691
https://www.sciencedirect.com/science/article/pii/S0164121219301487?casa_token=UT0EMFzxTcQAAAAA:L9J82_15tdySkabcIMSHKPx8rVkrltOzcwgme5cIBWgT0txJENY5y-BdUmCYUoGHnoEjZJH-cYc
https://dl.acm.org/doi/10.1145/3337932.3338815
https://testsmells.org/
https://dl.acm.org/doi/10.1145/3463274.3463335
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.6409&rep=rep1&type=pdf
https://link.springer.com/article/10.1007/s10664-021-09969-1
https://ieeexplore.ieee.org/document/9763153/
https://dl.acm.org/doi/10.1145/3472674.3473981
https://dibt.unimol.it/staff/fpalomba/documents/C14.pdf
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.sciencedirect.com/science/article/pii/S0164121221000364
https://dl.acm.org/doi/10.1145/3368089.3417921
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

1.4.1.49 Shotgun Surgery

Definition:
* Multiple places need to be modified with a single change.

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Bad smells and refactoring methods for GUI test script

1.4.1.50 Testing The Internal Monologue

Definition:

* Where the writer of the test has been so focused on the lines of code in their implementation that they haven’t
sought ways to observe the behaviour of the system from the outside.

Code Example:

@Spy
private Service service = new Service(...);

@Test

public void withInputAItDoesTheThing() {
service.process("A");
verify(service).internalCall(Q);

}

@Test

public void withInputBItDoesntDoTheThing() {
service.process("B");
verify(service, never()).internalCall();

}

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

Test Smells - The Coding Craftsman

200 Chapter 1. Contents

https://ieeexplore.ieee.org/abstract/document/6299294
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.4.1.51 The Butterfly

Definition:

* You have to test something which contains data that changes all the time, like a structure which contains the
current date, and there is no way to nail the result down to a fixed value. The ugly part is that you don’t care
about this value at all. It just makes your test more complicated without adding any value.

Also Known As:
* Sensitive Equality

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

» Unit testing Anti-patterns catalogue

1.4.1.52 The Nitpicker

Definition:

* A unit test which compares a complete output when it’s really only interested in small parts of it, so the test has
to continually be kept in line with otherwise unimportant details. Endemic in web application testing.

References:

Quality attributes
e - Code Example
- Cause and Effect
* - Frequency

e - Refactoring

* Anti-Patterns - Digital Tapestry
¢ Test-Driven Development: TDD Anti-Patterns
* Unit Testing Anti-Patterns, Full List

1.4. Issues in test steps 201

https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html

Test Smells Catalog, Release 2.0

1.4.1.53 Under-The-Carpet Assertion

Definition:
* Some assertions put into comments

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Rule-based Assessment of Test Quality

1.4.1.54 Under-The-Carpet Failing Assertion

Definition:

¢ A test having the smell Under-the-carpet failing Assertion is a test that returns a successful test-result, but contains
hidden assertions. A hidden assertion is an assertion that is put into comments, is not executed when the test
runs, and which would actually throw an Error or Failure if the comment were removed.

Also Known As:
¢ Commented Code in the Test

Code Example:

ICImporterTest >> #testImport

self assert: eventAtDate textualDescription = 'blabla'"”
self assert: eventAtDate categories anyOne

= (calendar categoryWithSummary: 'business').

"self assert:

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

» Assessing test quality - TestLint

* Rule-based Assessment of Test Quality

Test Smell Detection Tools: A Systematic Mapping Study

Test Smell Detection Tools: A Systematic Mapping Study

202 Chapter 1. Contents

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.9594
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

1.4.1.55 Using Assertions As A Substitute For All Class-Based Exceptions

Definition:

* Though the line between when to use assertions instead of class-based exceptions can be blurry at times, I think
a general rule of thumb here would be to use class-based exceptions in any situation where there is a chance of
recovery.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Abap assertion anti-patterns

1.4.1.56 Using Assertions As A Substitute For All Defensive Programming Techniques

Definition:

* When developers get carried away with assertions, assuming that they are an across-the-board replacement for
defensive programming techniques.

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

* Abap assertion anti-patterns

1.4.1.57 Using The Wrong Assert

Definition:

* There are a large number of different methods beginning with assert defined in the Assert class. Each of these
methods has slightly different arguments and semantics about what they are asserting. However, many program-
mers seem to stick with a single assertion method: assertTrue, and then force the argument of this method into
the required boolean expression.

Code Example:

1.4. Issues in test steps 203

https://blogs.sap.com/2013/02/14/abap-assertion-anti-patterns/
https://blogs.sap.com/2013/02/14/abap-assertion-anti-patterns/

Test Smells Catalog, Release 2.0

assertTrue("Objects must be the same", expected == actual);
assertTrue("Objects must be equal", expected.equals(actual));
assertTrue("Object must be null", actual == null);
assertTrue("Object must not be null", actual != null);
References:

Quality attributes

e - Code Example
¢ - Cause and Effect
e - Frequency

* - Refactoring

* JUnit Anti-patterns

1.4.2 Issues in exception handling

1.4.2.1 Catching Unexpected Exceptions

Definition:

* When writing production code, developers are generally aware of the problems of uncaught exceptions, and so
are relatively diligent about catching exceptions and logging the problem. In the case of unit tests, however, this

pattern is completly wrong!

Code Example:

public void testCalculation() {

try {
deepThought.calculate();

assertEquals("Calculation wrong", 42, deepThought.getResult());

}
catch(CalculationException ex) {
Log.error("Calculation caused exception", ex);
}
}

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Categorising Test Smells

* JUnit Anti-patterns

204

Chapter 1. Contents

https://exubero.com/junit/anti-patterns/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://exubero.com/junit/anti-patterns/

Test Smells Catalog, Release 2.0

1.4.2.2 Exception Catch/Throw

Definition:

* Passing or failing of a test case depends on custom exception handling code or exception throwing, which may
hide real problems and hamper debugging.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* The secret life of test smells-an empirical study on test smell evolution and maintenance

1.4.2.3 Exception Catching Throwing

Definition:
e Occurs when a test method is explicitly dependent on the production method throwing an exception

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* On the influence of Test Smells on Test Coverage

1.4.2.4 Exception Handling

Definition:

* This smell occurs when a test method explicitly a passing or failing of a test method is dependent on the production
method throwing an exception. Developers should utilize JUnit’s exception handling to automatically pass/fail
the test instead of writing custom exception handling code or throwing an exception.

Code Example:

@Test
public void realCase() {
Point p34 = new Point("34", 556506.667, 172513.91, 620.34, true);
Point p45 = new Point("45", 556495.16, 172493.912, 623.37, true);
Point p47 = new Point("47", 556612.21, 172489.274, 0.0, true);
Abriss a = new Abriss(p34, false);
(continues on next page)

1.4. Issues in test steps 205

https://link.springer.com/article/10.1007/s10664-021-09969-1
https://dl.acm.org/doi/10.1145/3350768.3350775

Test Smells Catalog, Release 2.0

(continued from previous page)

a.removeDAO(CalculationsDataSource.getInstance());
a.getMeasures().add(new Measure(p45, 0.0, 91.6892, 23.277, 1.63));
a.getMeasures() .add(new Measure(p47, 281.3521, 100.0471, 108.384, 1.63));

try {
a.compute();

} catch (CalculationException e) {
Assert.fail(e.getMessage());

}

// test intermediate values with point 45
Assert.assertEquals("233.2405",
this.df4.format(a.getResults().get(0).getUnknownOrientation()));
Assert.assertEquals("233.2435",
this.df4.format(a.getResults().get(0).getOrientedDirection()));
Assert.assertEquals("-0.1", this.dfl.format(
a.getResults().get(0®).getErrTrans()));

// test intermediate values with point 47
Assert.assertEquals("233.2466",
this.df4.format(a.getResults().get(1).getUnknownOrientation()));
Assert.assertEquals("114.5956",
this.df4.format(a.getResults().get(1).getOrientedDirection()));
Assert.assertEquals("0.5", this.dfl.format(
a.getResults().get(l).getErrTrans()));

// test final results

Assert.assertEquals("233.2435", this.df4.format(a.getMean()));
Assert.assertEquals("43", this.df0.format(a.getMSEQ));
Assert.assertEquals("30", this.df0.format(a.getMeanErrComp()));

}
References:
Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency
* - Refactoring
* An Exploratory Study on the Refactoring of Unit Test Files in Android Applications
» Automatic Identification of High-Impact Bug Report by Product and Test Code Quality
* Automatic generation of smell-free unit tests
* Characterizing High-Quality Test Methods: A First Empirical Study
* Handling Test Smells in Python: Results from a Mixed-Method Study
* Investigating Test Smells in JavaScript Test Code
* On the Distribution of “Simple Stupid Bugs” in Unit Test Files: An Exploratory Study
206 Chapter 1. Contents

https://dl.acm.org/doi/10.1145/3387940.3392189
https://huang.zj.cn/pdf/J13.pdf
https://repositorio.ul.pt/handle/10451/56819
https://ieeexplore.ieee.org/document/9796158/
https://dl.acm.org/doi/10.1145/3474624.3477066
https://dl.acm.org/doi/10.1145/3482909.3482915
https://ieeexplore.ieee.org/document/9463091

Test Smells Catalog, Release 2.0

* On the diffusion of test smells and their relationship with test code quality of Java projects
* On the distribution of test smells in open source Android applications: an exploratory study
* On the influence of Test Smells on Test Coverage

* On the test smells detection: an empirical study on the jnose test accuracy

* PyNose: A Test Smell Detector For Python

* Pytest-Smell: a smell detection tool for Python unit tests

* Refactoring Test Smells With JUnit 5: Why Should Developers Keep Up-to-Date?

* Refactoring Test Smells: A Perspective from Open-Source Developers

 Software Unit Test Smells

e TEMPY: Test Smell Detector for Python

* Test Smell Detection Tools: A Systematic Mapping Study

» TestAXE: Automatically Refactoring Test Smells Using JUnit 5 Features

* The secret life of test smells-an empirical study on test smell evolution and maintenance

* Understanding Testability and Test Smells

 Understanding practitioners’ strategies to handle test smells: a multi-method study

e What the Smell? An Empirical Investigation on the Distribution and Severity of Test Smells in Open Source
Android Applications

¢ tsDetect: an open source test smells detection tool

1.4.2.5 Expected Exceptions And Verification

Definition:
A verification happens after an expected exception is thrown and halts the test method execution

Code Example:

@Test(expected = RuntimeException.class)
public void shouldSaveFailureInformationWhenExceptionOccuriWhenAddingDomain() {
//given
doThrow(new RuntimeException()) .when(dnsService)
.addDomainIfMissing (DOMAIN_ADDRESS) ;

//when
domainRegistrator.registerDomain(domain) ;

//then
verify(domainService)
.saveDomain(domain, false, DNS_FAILURES + 1);

References:

Quality attributes
¢ - Code Example

1.4. Issues in test steps 207

https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://dl.acm.org/doi/10.5555/3370272.3370293
https://dl.acm.org/doi/10.1145/3350768.3350775
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://ieeexplore.ieee.org/document/9678615/
https://dl.acm.org/doi/10.1145/3533767.3543290
https://ieeexplore.ieee.org/document/9769994/
https://dl.acm.org/doi/10.1145/3425174.3425212
https://testsmells.org/
https://dl.acm.org/doi/10.1145/3555228.3555280
https://dl.acm.org/doi/10.1145/3463274.3463335
https://sol.sbc.org.br/index.php/cbsoft_estendido/article/view/22311
https://link.springer.com/article/10.1007/s10664-021-09969-1
https://www.designite-tools.com/blog/understanding-testability-test-smells
https://dl.acm.org/doi/10.1145/3474624.3474639
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://dl.acm.org/doi/10.1145/3368089.3417921

Test Smells Catalog, Release 2.0

e - Cause and Effect

* - Frequency

- Refactoring

* Bad tests, good tests

1.4.2.6 Expecting Exceptions Anywhere

Definition:

* Tests that do not track the step that raised the expected exception and pass

Code Example:

@Test (expected=IndexOutOfBoundsException.class)

public

void testMyList() {

MyList<Integer> list = new MyList<Integer>(Q);

list.
list.
.add(3);
list.
list.

list

add(1);
add(2);

add(3);
add(4);

assertTrue(4 == list.get(4));
assertTrue(2 == list.get(1));
assertTrue(3 == list.get(2));

list.

}

get(6);

@Test (expected=IndexOutOfBoundsException.class)

public

void testNegative() {

MyList<Integer> list = new MyList<Integer>();

list.
list.
list.
list.
.add(4);
list.

list

3
}

add(1);
add(2);
add(3);
add(3);

get(-1);

References:

Quality attributes

e - Code Example

e - Cause and Effect

* - Frequency

* - Refactoring

* Bad tests, good tests

208

Chapter 1. Contents

http://kaczanowscy.pl/books/bad_tests_good_tests.html
http://kaczanowscy.pl/books/bad_tests_good_tests.html

Test Smells Catalog, Release 2.0

1.4.2.7 Issues In Exception Handling

Definition:

* A test case that succeeds even when an exception is thrown. Mostly, the exception is ignored along with its type,
which represents specific semantics. This may lead to false results, e.g. when testing the authentication protocol.

Also Known As:
¢ The Secret Catcher

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

¢ Did You Remember To Test Your Tokens?

1.4.2.8 No Error Handling In Tests

Definition:

* Avoid such error handling in tests, as this kind of err should be a tech handler but not a business matters.
Code Example:

* No code examples yet...

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

 Test Development Patterns and Anti-Patterns - Medium

1.4. Issues in test steps 209

https://dl.acm.org/doi/10.1145/3379597.3387471
https://medium.com/test-go-where/test-development-patterns-and-anti-patterns-78820e1802df

Test Smells Catalog, Release 2.0

1.4.2.9 The Greedy Catcher

Definition:

* A unit test which catches exceptions and swallows the stack trace, sometimes replacing it with a less informative
failure message, but sometimes even just logging (c.f. Loudmouth) and letting the test pass.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Anti-Patterns - Digital Tapestry
* Categorising Test Smells
* Test-Driven Development: TDD Anti-Patterns

 Unit Testing Anti-Patterns, Full List

1.4.2.10 The Secret Catcher

Definition:

* A test that at first glance appears to be doing no testing, due to absence of assertions. But “The devil is in the
details”.. the test is really relying on an exception to be thrown and expecting the testing framework to capture
the exception and report it to the user as a failure.

Also Known As:
 The Silent Catcher, Issues in Exception Handling

Code Example:

[Test]
public void ShouldNotThrow()
{
DoSomethingThatShouldNotThrowAnException();
}

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

 Anti-Patterns - Digital Tapestry

210 Chapter 1. Contents

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://digitaltapestry.net/testify/manual/AntiPatterns.html

Test Smells Catalog, Release 2.0

» Categorising Test Smells
¢ Test-Driven Development: TDD Anti-Patterns
¢ Unit Testing Anti-Patterns, Full List

¢ Unit testing Anti-patterns catalogue

1.4.2.11 The Silent Catcher

Definition:

* A test that passes if an exception is thrown. Even if the exception that actually occurs is one that is different than
the one the developer intended.

Also Known As:
¢ The Secret Catcher

Code Example:

[Test]

[ExpectedException(typeof(Exception))]

public void ItShouldThrowDivideByZeroException()

{
// some code that throws another exception yet passes the test

}

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Anti-Patterns - Digital Tapestry
» Smells in software test code: A survey of knowledge in industry and academia

* Unit testing Anti-patterns catalogue

1.4.3 Issues in setup

1.4.3.1 Badly Used Fixture

Definition:

* A Badly Used Fixture is a fixture that is not fully used by the tests in the test-suite.
Also Known As:

* General Fixture

Code Example:

1.4. Issues in test steps 211

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue

Test Smells Catalog, Release 2.0

public class ShoppingCartTest {

private ShoppingCart cart;

@Before

public void setUp() {
cart = new ShoppingCart();
cart.addItem(new Item("Shirt", 25.0));
cart.addItem(new Item("Pants", 50.0));

}

@Test

public void testEmptyCart() {
cart.clear(Q);
assertTrue(cart.getItems().isEmpty());

3

@Test

public void testAddItem() {
cart.addItem(new Item("Shoes", 75.0));
assertEquals(3, cart.getltems().size());

}

// This test doesn't need to use the pre-selected items
@Test
public void testRemoveItem() {
cart.removeltem(new Item("Shirt", 25.0));
assertEquals(l, cart.getlItems().size());

}
}
References:
Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency
e - Refactoring
* Assessing test quality - TestLint
212 Chapter 1. Contents

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.9594

Test Smells Catalog, Release 2.0

1.4.3.2 Bury The Lede

Definition:

* A test’s setup is so onerous that the reader forgets the purpose of the subject by the time they reach the relevant
invocation and assertion of the subject.

Code Example:

// Subject under test

function verifyCardholderZip (cardId, zip) {
var card = repo.find(cardId)
var user = repo.find(card.userId)
var address = repo.find(user.addressId)

return address.zip === zip

}

// Test
module.exports = {
truelfZipMatches: function () {
var address = {street: '123 Sesame', city: 'Cbhus', state: 'OH', zip: '42'}
repo.save(address)
var user = {
addressId: address.id,
name: 'Jane',
age: 12,
income: '$12.48'
}
repo.save(user)
var issuer = {bankName: 'Bank Co'}
repo.save(issuer)
var card = {
userId: user.id,

apr: 17.8,

number: '1234 0000 2828 4494',
ccv: 364,

issuerId: issuer.id

}

repo.save(card)
var result = verifyCardholderZip(card.id, '42")

assert.equal (result, true)
}
}

// Fake production implementations to simplify example test of subject
var repo = {
__items: {3},
nextId: 1,
save: function (obj) {
if (lobj.id) obj.id = repo.nextId++

(continues on next page)

1.4. Issues in test steps 213

Test Smells Catalog, Release 2.0

(continued from previous page)

// Gotcha!

if (obj.zip) validateAddress(obj)
if (obj.addressId) validateUser(obj)
if (obj.userId) validateCard(obj)

repo.__items[obj.id] = obj
Yo
find: function (id) {
return repo.__items[id]
}
}

function validateAddress (address) {
requireProperties(address, ['street', 'city', 'state'])

}

function validateUser (user) {
requireProperties(user, ['name', 'age', 'income'])

}

function validateCard (card) {
requireProperties(card, ['apr', 'number', 'ccv'])
requireRelation(card, 'issuerId', 'bankName')

¥

function requireProperties (obj, props) {
props.forEach(function (prop) {
if (!obj.hasOwnProperty(prop)) {
throw new Error('ERROR: "' + prop +
}
b

required on ' + JSON.stringify(obj))

}

function requireRelation (obj, idKey, prop) {
var relation = repo.find(obj[idKey])

if (!relation || !relation.hasOwnProperty(prop)) {
throw new Error('ERROR: "' + prop + '" required on "' + idKey + '" of ' +
JSON.stringify(obj))
}
3
References:
Quality attributes

¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* A workbook repository of example test smells and what to do about them

214 Chapter 1. Contents

https://github.com/testdouble/test-smells

Test Smells Catalog, Release 2.0

1.4.3.3 Complicated Set Up Scenarios Within The Tests Themselves

Definition:

e Whilst there’s a place for automated end-to-end scenarios (I call these user journies), I prefer most acceptance
tests to jump straight to the point.

Code Example:

Scenario: Accept Visa and Mastercard for Australia
Given I am on the home page for Australia

And I choose the tea menu

And I select some 'green tea'

And I add the tea to my basket

And I choose to checkout

Then I should see 'visa' is accepted

And I should see 'mastercard' is accepted

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Five automated acceptance test anti-patterns

1.4.3.4 Curdled Test Fixtures

Definition:

e Where there’s an inappropriate union of tests in the same fixture, or splitting into multiple fixtures where one
would be better

Code Example:

class MyTest {
// some test input or expected output
private static final SomeObject COMPLEX_DATA = new ...;

private Thing whatWeAreTesting = new ...;
// ... other resources

@BeforeEach
void beforeEach() {
// some additional setup
}
@AfterEach
void afterEach() {
// some tidy up

(continues on next page)

1.4. Issues in test steps 215

https://alisterbscott.com/2015/01/20/five-automated-acceptance-test-anti-patterns/

Test Smells Catalog, Release 2.0

(continued from previous page)

3

@Test
void testOne() { ... }

}

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

Test Smells - The Coding Craftsman

1.4.3.5 Empty Shared-Fixture

Definition:
* A test that defines a fixture with an empty body.

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Automatic generation of smell-free unit tests

* Rule-based Assessment of Test Quality

Test Smell Detection Tools: A Systematic Mapping Study

1.4.3.6 Excessive Inline Setup

Definition:
» Too much setup in every test means the reader has to skip most of the test to get to the meat.

References:

Quality attributes
* - Code Example

216 Chapter 1. Contents

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://repositorio.ul.pt/handle/10451/56819
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

e - Cause and Effect
* - Frequency

* - Refactoring

» Categorising Test Smells

* Smells of Testing (signs your tests are bad)

1.4.3.7 Excessive Setup

Definition:

* Many dependencies you have to create beforehand (such as classes, operating system dependencies, databases -

basically anything that removes the attention to the testing goal).

Also Known As:

 Large Setup Methods, Inappropriately Shared Fixture, The Mother Hen, The Stranger, The Distant Relative, The

Cuckoo

Code Example:

jest.mock('compression')
jest.mock('connect")
jest.mock('serve-static')
jest.mock('serve-placeholder')
jest.mock('launch-editor-middleware")
jest.mock('@nuxt/utils")
jest.mock('@nuxt/vue-renderer')
jest.mock('../src/listener')
jest.mock('../src/context")
jest.mock('../src/jsdom")
jest.mock('../src/middleware/nuxt')
jest.mock('../src/middleware/error')
jest.mock('../src/middleware/timing')

describe('server: server', () => {
const createNuxt = () => ({
options: {
dir: {
static: 'var/nuxt/static'’
e
srcDir: '/var/nuxt/src',
buildDir: '/var/nuxt/build',
globalName: 'test-global-name',
globals: { id: 'test-globals' },
build: {
publicPath: '__nuxt_test'
e
router: {
base: '/foo/'
L
render: {
id: 'test-render',

(continues on next page)

1.4. Issues in test steps

217

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://jakescruggs.blogspot.com/2009/04/smells-of-testing-signs-your-tests-are.html

Test Smells Catalog, Release 2.0

(continued from previous page)

dist: {

id: 'test-render-dist'
o
static: {

id: 'test-render-static',
prefix: 'test-render-static-prefix'
}
e
server: {},
serverMiddleware: []
1
hook: jest.fn(),
ready: jest.fn(Q),
callHook: jest.fn(),
resolver: {
requireModule: jest.fn(),
resolvePath: jest.fn().mockImplementation(p => p)
}
b

beforeAll(() => {
jest.spyOn(path, 'join').mockImplementation((...args) => join(${args.join(', ') }))
jest.spyOn(path, 'resolve').mockImplementation((...args) => resolve(${args.join(',
="
connect.mockReturnValue({ use: jest.fn() })
serveStatic.mockImplementation(dir => ({ id: 'test-serve-static', dir }))
nuxtMiddleware.mockImplementation(options => ({
id: 'test-nuxt-middleware',
...options
19D
errorMiddleware.mockImplementation(options => ({
id: 'test-error-middleware',
...options
19))
createTimingMiddleware.mockImplementation(options => ({
id: 'test-timing-middleware',
...options
19))
launchMiddleware.mockImplementation(options => ({
id: 'test-open-in-editor-middleware',
...options
19))
servePlaceholder.mockImplementation(options => ({
key: 'test-serve-placeholder',
...options
19D
b
}

References:

Quality attributes

218 Chapter 1. Contents

Test Smells Catalog, Release 2.0

¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Anti-Patterns - Digital Tapestry

* Categorising Test Smells

e TDD anti patterns - Chapter 1

» TDD anti-patterns - the liar, excessive setup, the giant, slow poke
e Test-Driven Development: TDD Anti-Patterns

e Unit Testing Anti-Patterns, Full List

» Unit testing Anti-patterns catalogue

1.4.3.8 Factories That Contain Unnecessary Data

Definition:
* When factories define more data than necessary for a model to function

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Rails Testing Antipatterns: Fixtures and Factories

1.4.3.9 Fragile Fixture

Definition:

¢ When a Standard Fixture is modified to accommodate a new test, several other tests fail. This is an alias for either
Data Sensitivity or Context Sensitivity.

References:

Quality attributes
e - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

1.4. Issues in test steps 219

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://www.codurance.com/publications/tdd-anti-patterns-chapter-1
https://marabesi.com/tdd/2021/08/28/tdd-anti-patterns.html
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://semaphoreci.com/blog/2014/01/14/rails-testing-antipatterns-fixtures-and-factories.html

Test Smells Catalog, Release 2.0

» Categorising Test Smells

» xUnit test patterns: Refactoring test code

1.4.3.10 Fragile Locators

Definition:

* Any slight change on the UI would fail the tests, and it will require some maintenance work to update the specific
locator.

Code Example:
* No code examples yet...

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* How To Avoid Anti-Patterns In Cypress

1.4.3.11 General Fixture

Definition:

* Occurs when a test case fixture is too general and the test methods only access part of it. A test setup/fixture
method that initializes fields that are not accessed by test methods indicates that the fixture is too generalized. A
drawback of it being too general is that unnecessary work is being done when a test method is run.

Also Known As:
* Badly Used Fixture

Code Example:

public void testGetFlightsByFromAirport_OneOutboundFlight() throws Exception {

setupStandardAirportsAndFlights();

FlightDto outboundFlight = findOneOutboundFlight();

// Exercise System

List flightsAtOrigin = facade.getFlightsByOriginAirport(
outboundFlight.getOriginAirportId());

// Verify Outcome

assertOnlylFlightInDtoList("Flights at origin", outboundFlight,

flightsAtOrigin);
}

public void testGetFlightsByFromAirport_TwoOutboundFlights() throws Exception {
setupStandardAirportsAndFlights();
FlightDto[] outboundFlights = findTwoOutboundFlightsFromOneAirport();

(continues on next page)

220 Chapter 1. Contents

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://www.lambdatest.com/blog/avoid-anti-patterns-in-cypress/

Test Smells Catalog, Release 2.0

(continued from previous page)

// Exercise System
List flightsAtOrigin = facade.getFlightsByOriginAirport(
outboundFlights[0].getOriginAirportId());
// Verify Outcome
assertExactly2FlightsInDtolList("Flights at origin", outboundFlights,
flightsAtOrigin);

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* A preliminary evaluation on the relationship among architectural and test smells

* A survey on test practitioners’ awareness of test smells

* An Empirical Study into the Relationship Between Class Features and Test Smells

* An Exploratory Study on the Refactoring of Unit Test Files in Android Applications
* An analysis of information needs to detect test smells

* An empirical investigation into the nature of test smells

* An exploratory study of the relationship between software test smells and fault-proneness
* Are test smells really harmful? An empirical study

» Assessing diffusion and perception of test smells in scala projects

» Automated Detection of Test Fixture Strategies and Smells

» Automatic Identification of High-Impact Bug Report by Product and Test Code Quality
* Automatic Test Smell Detection Using Information Retrieval Techniques

* Automatic generation of smell-free unit tests

* Categorising Test Smells

 Characterizing High-Quality Test Methods: A First Empirical Study

¢ Characterizing the Relative Significance of a Test Smell

* Detecting redundant unit tests for Aspect] programs

* Enhancing developers’ awareness on test suites’ quality with test smell summaries

* Handling Test Smells in Python: Results from a Mixed-Method Study

* How are test smells treated in the wild? A tale of two empirical studies

* Investigating Severity Thresholds for Test Smells

¢ Just-In-Time Test Smell Detection and Refactoring: The DARTS Project

1.4. Issues in test steps 221

https://ieeexplore.ieee.org/document/10006864/
https://arxiv.org/abs/2003.05613
https://ieeexplore.ieee.org/document/7890581
https://dl.acm.org/doi/10.1145/3387940.3392189
https://www2.swc.rwth-aachen.de/docs/teaching/seminar2016/FsSE%20CTRelEng%202016.pdf#page=23
https://dl.acm.org/doi/10.1145/2970276.2970340
https://ieeexplore.ieee.org/abstract/document/8847402/
https://link.springer.com/article/10.1007/s10664-014-9313-0
https://dl.acm.org/doi/10.1109/MSR.2019.00072
https://ieeexplore.ieee.org/document/6569744
https://huang.zj.cn/pdf/J13.pdf
https://ieeexplore.ieee.org/abstract/document/8530039
https://repositorio.ul.pt/handle/10451/56819
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/9796158/
https://ieeexplore.ieee.org/document/4021366
https://ieeexplore.ieee.org/abstract/document/4021983
https://lutpub.lut.fi/handle/10024/158751
https://dl.acm.org/doi/10.1145/3474624.3477066
https://sol.sbc.org.br/journals/index.php/jserd/article/download/1802/1807/7485
https://dl.acm.org/doi/abs/10.1145/3379597.3387453
https://fpalomba.github.io/pdf/Conferencs/C51.pdf

Test Smells Catalog, Release 2.0

e Let’s not

* Obscure Test

* On The Detection of Test Smells: A Metrics-Based Approach for General Fixture and Eager Test
* On the Distribution of “Simple Stupid Bugs” in Unit Test Files: An Exploratory Study

* On the diffusion of test smells and their relationship with test code quality of Java projects

* On the distribution of test smells in open source Android applications: an exploratory study

* On the influence of Test Smells on Test Coverage

* On the interplay between software testing and evolution and its effect on program comprehension
* On the test smells detection: an empirical study on the jnose test accuracy

* On the use of test smells for prediction of flaky tests

* PyNose: A Test Smell Detector For Python

» Refactoring Test Code

* SoCRATES: Scala radar for test smells

* Software Unit Test Smells

* Strategies for avoiding text fixture smells during software evolution

e Test Smell Detection Tools: A Systematic Mapping Study

* TestQ: Exploring Structural and Maintenance Characteristics of Unit Test Suites

* The secret life of test smells-an empirical study on test smell evolution and maintenance

» Towards Automated Tools for Detecting Test Smells: An Empirical Investigation into the Nature of Test Smells
* What We Know About Smells in Software Test Code

e What the Smell? An Empirical Investigation on the Distribution and Severity of Test Smells in Open Source
Android Applications

e Why do builds fail?—A conceptual replication study
¢ tsDetect: an open source test smells detection tool

» xUnit test patterns: Refactoring test code

1.4.3.12 Hidden Test Data

Definition:
¢ The data are not directly visible and understandable in the test but are hidden in the fixture code

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
e - Frequency

* - Refactoring

222 Chapter 1. Contents

https://thoughtbot.com/blog/lets-not
http://xunitpatterns.com/Obscure%20Test.html
https://ieeexplore.ieee.org/abstract/document/4359471
https://ieeexplore.ieee.org/document/9463091
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://dl.acm.org/doi/10.5555/3370272.3370293
https://dl.acm.org/doi/10.1145/3350768.3350775
https://link.springer.com/chapter/10.1007/978-3-540-76440-3_8
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://dl.acm.org/doi/abs/10.1145/3482909.3482916
https://ieeexplore.ieee.org/document/9678615/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.5499&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3337932.3338815
https://testsmells.org/
https://ieeexplore.ieee.org/document/6624053
https://dl.acm.org/doi/10.1145/3463274.3463335
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.6409&rep=rep1&type=pdf
https://link.springer.com/article/10.1007/s10664-021-09969-1
https://dibt.unimol.it/staff/fpalomba/documents/C14.pdf
https://ieeexplore.ieee.org/document/8501942
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.sciencedirect.com/science/article/pii/S0164121221000364
https://dl.acm.org/doi/10.1145/3368089.3417921
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

* On the Maintenance of System User Interactive Tests

e Smells in System User Interactive Tests

1.4.3.13 Idle Ptc

Definition:
¢ A PTC is created but never started. A PTC which is not started is of no use for the test case.

Code Example:

testcase exampleTestCase () runs on MainComponentType system SystemType {
/).
var ParallelComponentType exampleComponent := ParallelComponentType.create;
map(self: aPort, system: aPort) ;
connect(self: anotherPort, exampleComponent: aPort) ;
// no start here...

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites
 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.4.3.14 Inappropriately Shared Fixture

Definition:

» Several test cases in the test fixture do not even use or need the setup / teardown. Partly due to developer inertia

to create a new test fixture... easier to just add one more test case to the pile
Also Known As:
* Excessive Setup

References:

Quality attributes
* - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

1.4. Issues in test steps

223

https://orbilu.uni.lu/handle/10993/48254
https://arxiv.org/abs/2111.02317
https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

 Categorising Test Smells

* Unit testing Anti-patterns catalogue

1.4.3.15 Irrelevant Information

Definition:

» The test is exposing a lot of irrelevant details about the fixture that distract the test reader from what really affects
the behavior of the SUT.

Code Example:

public void testAddItemQuantity_severalQuantity_v10(){

// Setup Fixture

Address billingAddress = createAddress("1222 1st St SW", "Calgary", "Alberta", "T2N.
—2V2", "Canada");

Address shippingAddress = createAddress("1333 1st St SW", "Calgary", "Alberta",
<"T2N 2V2", "Canada");

Customer customer = createCustomer(99, "John", "Doe", new BigDecimal("30"),

billingAddress, shippingAddress);

Product product createProduct(88, "SomeWidget",new BigDecimal("19.99"));

Invoice invoice = createInvoice(customer);

// Exercise SUT

invoice.addItemQuantity(product, 5);

// Verify Outcome

LineItem expected = new LineItem(invoice, product,5, new BigDecimal("30"), new.
—BigDecimal("69.96"));

assertContainsExactlyOnelLineItem(invoice, expected);

}

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Detecting redundant unit tests for Aspect] programs

¢ Obscure Test

224 Chapter 1. Contents

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://ieeexplore.ieee.org/abstract/document/4021983
http://xunitpatterns.com/Obscure%20Test.html

Test Smells Catalog, Release 2.0

1.4.3.16 Isolated Ptc

Definition:

¢ A PTC is created and started, but neither connected to another component nor mapped to the TSI. A PTC which
is not connected or mapped is isolated from all other components, especially the MTC, and is of no use for the
test.

Code Example:

testcase exampleTestCase() runs on MainComponentType system SystemType {
// - ..
var ParallelComponentType exampleComponent := ParallelComponentType.create;
// no map or connect statement shere!
exampleComponent . start(exampleBehavior())
exampleComponent . done

// .

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

¢ Pattern-based Smell Detection in TTCN-3 Test Suites

 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.4.3.17 Large Fixture

Definition:

* Provides a large amount of data to the tests, making it difficult to understand the state of a unit under test and also
obfuscating the purpose of the tests. Furthermore setup and teardown require a large amount of time slowing
down the execution of the tests

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

e - Refactoring

* Rule-based Assessment of Test Quality

1.4. Issues in test steps 225

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf

Test Smells Catalog, Release 2.0

1.4.3.18 Max Instance Variables

Definition:
* A test method that has a large fixture

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Rule-based Assessment of Test Quality

Test Smell Detection Tools: A Systematic Mapping Study

1.4.3.19 Noisy Logging

Definition:
* The test logs the state of the fixtures

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* On the Maintenance of System User Interactive Tests

* Smells in System User Interactive Tests

1.4.3.20 Noisy Setup

Definition:
* When a verbose sequence of low-level records that is difficult to comprehend is displayed in the setup

Code Example:

let(:product_1) { create(:product, name: 'iPad') }
let(:product_sale_1) { create(:product_sale, retail_price: 500, product: product_1) }
let(:product_2) { create(:product, name: 'iPhone') }
let(:product_sale_2) { create(:product_sale, retail_price: 500, product: product_2) }
let(:product_sales) { [product_sale_1, product_sale_2] }
let(:sale) { create(:sale, name: 'Apple Bundle', product_sales: product_sales) }

(continues on next page)

226 Chapter 1. Contents

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335
https://orbilu.uni.lu/handle/10993/48254
https://arxiv.org/abs/2111.02317

Test Smells Catalog, Release 2.0

(continued from previous page)

let(:user) { create(:user, name: 'Thiago') }
let!(:1line_item) { create(:order_line_item, order: order, sale: sale) }
let(:order) { create(:order, user: user) }

it 'retrieves the expected data' do
Run the query and make assertions
end

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

¢ - Refactoring

* Rails Testing Antipatterns: Fixtures and Factories

1.4.3.21 Obscure In-Line Setup

Definition:

* An in-line setup should consist of only the steps and values essential to understanding the test. Essential but
irrelevant steps should be encapsulated into helper methods. An obscure in-line setup covers too much setup
functionality within the test method. This can hinder developers in seeing the relevant verification steps of the
test.

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

» Automated Detection of Test Fixture Strategies and Smells

* Automatic generation of smell-free unit tests

* PyNose: A Test Smell Detector For Python

* Strategies for avoiding text fixture smells during software evolution

¢ Test Smell Detection Tools: A Systematic Mapping Study

1.4. Issues in test steps 227

https://semaphoreci.com/blog/2014/01/14/rails-testing-antipatterns-fixtures-and-factories.html
https://ieeexplore.ieee.org/document/6569744
https://repositorio.ul.pt/handle/10451/56819
https://ieeexplore.ieee.org/document/9678615/
https://ieeexplore.ieee.org/document/6624053
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

1.4.3.22 Oversharing On Setup

Definition:

* Where every test sets up a lot of shared data which only some tests need.

Code Example:

beforeEach(() => {
databaseConnection = openDatabase();
inputFile = loadBigFile();
userList = loadUserList();
imageData = loadImageBytes();

s

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

Test Smells - The Coding Craftsman

1.4.3.23 Refused Bequest

Definition:

* A mega setup that some tests ignore, some use, and most rely on but only for a few lines. When any individual

test fails it’s hard to parse the setup to see what’s going on.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

» Categorising Test Smells

* Improving Student Testing Practices through a Lightweight Checklist Intervention.

Smells of Testing (signs your tests are bad)

228

Chapter 1. Contents

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://repository.lib.ncsu.edu/bitstream/handle/1840.20/39743/etd.pdf?sequence=1
https://jakescruggs.blogspot.com/2009/04/smells-of-testing-signs-your-tests-are.html

Test Smells Catalog, Release 2.0

1.4.3.24 Scattered Test Fixtures

Definition:

* Test fixtures are defined in test cases to set up the environment for test execution. A base test case may define
a general test fixture (i.e., a method annotated by @BeforeClass or @Before). When a child test case inherits a
base test case, the child test case may define its own test fixture, but may also call the test fixture of the base test
case. In multi-level inheritance, when each child test case has its own test fixture, the test fixture code becomes
scattered and difficult to maintain.

Code Example:
* No code examples yet...

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Revisiting Test Impact Analysis in Continuous Testing From the Perspective of Code Dependencies

1.4.3.25 Separate Fixture Files

Definition:

* It’s now a bit hard to tell what the data look like in the test code. If the data isn’t too large, especially when I need
only a small fraction of the data. I would define an in-file variable to demonstrate what we expect, and then use
it in the test.

Code Example:
* No code examples yet...

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

e - Refactoring

* Unveiling 6 Anti-Patterns in React Test Code: Pitfalls to Avoid

1.4. Issues in test steps 229

https://ieeexplore.ieee.org/document/9303402/
https://itnext.io/unveiling-6-anti-patterns-in-react-test-code-pitfalls-to-avoid-fd7e5a3a7360

Test Smells Catalog, Release 2.0

1.4.3.26 Share The World

Definition:

* where the test sets up all its resources at the start of the fixture, leading to either bleeding of state between tests,
or extra work to keep things tidy

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Test Smells - The Coding Craftsman

1.4.3.27 Superfluous Setup Data

Definition:

* QOccurs when testing queries or filters, in which you only expect to get a subset of the data back. The underlying
idea is that, in order to be thorough, “extra” data should be present to show that the query or filter works as
required.

Code Example:

@Test

public void givenMultipleWidgetsExistWhenQueriedByNameThenOnlyWidgetAFound() {
insertDefaultWidget("a");

insertDefaultWidget("b");

insertDefaultWidget("'c");

WidgetQuery widgetQuery = new WidgetQuery();
List<Widget> results = widgetQuery.findByName("a");

assertEquals(l, results.size());
assertEquals("a", results[0].getName());
}

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

 Testing anti-patterns

230 Chapter 1. Contents

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://medium.com/jameskbride/testing-anti-patterns-b5ffc1612b8b

Test Smells Catalog, Release 2.0

1.4.3.28 Taking Environment State For Granted

Definition:

» Taking environment state for granted is often over optimistic. Unlike in unit tests, end-to-end setup gives little
control over test environment state, particularly when it is shared with other teams. When the test starts failing
it might be because of a new bug introduced or because environment is not in a state your test needs.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

e Anti-patterns in test automation

1.4.3.29 Test Maverick

Definition:

* A test method is a maverick when the class comprising the test method contains an implicit setup, but the test
method is completely independent from the implicit setup procedure. The setup procedure will be executed before
the test method is executed, but it is not needed. Also, understanding the effect-cause relationship between setup
and test method can be hampered. Discovering that test methods are unrelated from the implicit setup can be
time consuming.

References:

Quality attributes
e - Code Example
- Cause and Effect
* - Frequency

e - Refactoring

* Automated Detection of Test Fixture Strategies and Smells
* Automatic generation of smell-free unit tests
* PyNose: A Test Smell Detector For Python

* Strategies for avoiding text fixture smells during software evolution

Test Smell Detection Tools: A Systematic Mapping Study

1.4. Issues in test steps 231

https://www.codementor.io/@mgawinecki/anti-patterns-in-test-automation-101c6vm5jz
https://ieeexplore.ieee.org/document/6569744
https://repositorio.ul.pt/handle/10451/56819
https://ieeexplore.ieee.org/document/9678615/
https://ieeexplore.ieee.org/document/6624053
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

1.4.3.30 Test Objects Initialized In A Describe Block

Definition:

* When tests share the same reference to an object, meaning that any single test can mutate the object for following
tests.

Code Example:
* No code examples yet...

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* JavaScript Testing Anti-Patterns

1.4.3.31 Test Objects Initialized In Each Test

Definition:

* When the test object is initialized in each test case
Code Example:

* No code examples yet...

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* JavaScript Testing Anti-Patterns

232 Chapter 1. Contents

https://www.jonmellman.com/posts/javascript-testing-anti-patterns
https://www.jonmellman.com/posts/javascript-testing-anti-patterns

Test Smells Catalog, Release 2.0

1.4.3.32 Test Setup Is Somewhere Else

Definition:

e Where the test method just does the assertions, not the given/when part; this can be acceptable in the case of
several tests on a single shared expensive resource setup, but seldom is at other times.

Code Example:

@Test
void theOperationIsSuccessful() {
assertTrue(service.isLastOperationSuccessful());

}

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Test Smells - The Coding Craftsman

1.4.3.33 The Cuckoo

Definition:

* A unit test which sits in a test case with several others, and enjoys the same (potentially lengthy) setup process
as the other tests in the test case, but then discards some or all of the artifacts from the setup and creates its own.

Also Known As:
* Excessive Setup

References:

Quality attributes
e - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* Anti-Patterns - Digital Tapestry
» Categorising Test Smells
* Unit Testing Anti-Patterns, Full List

¢ Unit testing Anti-patterns catalogue

1.4. Issues in test steps 233

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue

Test Smells Catalog, Release 2.0

1.4.3.34 The Mother Hen

Definition:

¢ A common setup which does far more than the actual test cases need. For example creating all sorts of complex
data structures populated with apparently important and unique values when the tests only assert for presence or
absence of something.

Also Known As:
* Excessive Setup

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

» Categorising Test Smells

* Unit testing Anti-patterns catalogue

1.4.3.35 There Is Too Much Setup To Run The Test Cases

Definition:

* Tests require an excessive amount of setup just to be able to run. This may be in the Arrange stage of the individual
tests or in a setup method that runs before the tests. There can be hundreds of lines of code in some cases where
there is too much setup needed. This makes it almost impossible to understand what is being tested because of
all the extra in the setup.

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Anti-Patterns In Unit Testing

234 Chapter 1. Contents

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://completedeveloperpodcast.com/anti-patterns-in-unit-testing/

Test Smells Catalog, Release 2.0

1.4.3.36 Unused Definition

Definition:

¢ Unused code should be removed. Note that only local definitions can be removed safely because they cannot be
accessed from outside the defining unit. For global definitions there might exist references in modules which
have not been considered.

Code Example:

function unused_f (in integer i) return integer {
var integer j :=4 2 , k ;
return i + j ;

¥

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.4.3.37 Using Fixtures

Definition:
* When a test uses fixtures to prepare and reuse test data.

Code Example:

spec/fixtures/users.yml
marko:
first_name: Marko
last_name: Anastasov
phone: 555-123-6788

.describe do
fixtures :all

describe "#full_name" do
it "is composed of first and last name" do
user = users(:marko)
expect (user.full_name).to eql "Marko Anastasov"
end
end
end

1.4. Issues in test steps 235

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Rails Testing Antipatterns: Fixtures and Factories

1.4.3.38 Vague Header Setup

Definition:

* A vague header setup smell occurs when fields are solely initialized in the header of a class. We consider this a
smell as the behavior of the code is not explicitly defined and depends on the field modifier (static or member) as
well as on the implementation of the test framework. Vague header setups might hamper code comprehension
and maintainability, as fields can be placed anywhere in the class. Further, in many test frameworks exception
messages are more expressive for fields initialized in the setup.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Automated Detection of Test Fixture Strategies and Smells
* Automatic generation of smell-free unit tests
* Strategies for avoiding text fixture smells during software evolution

* Test Smell Detection Tools: A Systematic Mapping Study

1.4.3.39 Verifying In Setup Method

Definition:
* When there is an assertion method within the SetUp method.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect

* - Frequency

236 Chapter 1. Contents

https://semaphoreci.com/blog/2014/01/14/rails-testing-antipatterns-fixtures-and-factories.html
https://ieeexplore.ieee.org/document/6569744
https://repositorio.ul.pt/handle/10451/56819
https://ieeexplore.ieee.org/document/6624053
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

e - Refactoring

* Handling Test Smells in Python: Results from a Mixed-Method Study
* TEMPY: Test Smell Detector for Python

1.4.3.40 Where Does This One Go?

Definition:

* similar to the Curdled Test Fixture, this is caused by many tests having the same entry point into the software, even
though they represent different use cases. It can be a symptom of using integration-level tests to test low-level
things, or weakly defining the rules for each test fixture.

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Test Smells - The Coding Craftsman

1.4.4 Issues in teardown

1.4.4.1 Activation Asymmetry

Definition:

* A default activation has no matching subsequent deactivation in the same statement block, or a deactivation has
no matching previous activation.

Code Example:

altstep myAltstep (timer t) runs on MyComponent {
[1 any port.receive {
setverdict(fail)
log ("unexpected message")
}
[] t.timeout{
setverdict(fail)
log("timeout")
}
}

function activateDefault(timer t) return default {
// no deactivation in this function!
return act ivate (myAltstep (t))

}

(continues on next page)

1.4. Issues in test steps 237

https://dl.acm.org/doi/10.1145/3474624.3477066
https://dl.acm.org/doi/10.1145/3555228.3555280
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

testcase myTestcasel () runs on MyComponent {
timer t
var default myDefaultVar := activate(myAltstep(t))
t.start(10.0)
alt{
[1 p.receive(charstring: ("fool")){
p-send("ack™)
}
[1 p.receive(charstring: ("barl")) {
p.send("nack")
}
}
deactivate(myDefaultVar)

}

testcase myTestcase2 () runs on MyComponent {
timer t;
// activation in function call
var default myDefaultVar := activateDefault(t)
t.start(10.0)
alt {
[Ip.receive(charstring: ("foo2")) {
p.-send("ack")
}
[lp.receive(charstring: ("bar2")) {
p.send("nack™)
}
}
deactivate (myDefaultVar)

}

testcase myTestcase3 () runs on MyComponent {
// deactivation in different statement blocks
timer t
var default myDefaultVar
myDefaultVar := activate(myAltstep(t))
t.start(10.0)

if(2 > 1) {
alt {
[1 p.receive(charstring: ("foo5")){
p.send("ack")
}[] p.receive(charstring: ("bar5")){
p.send("nack")
}
}
deactivate (myDefaultVar)
}
}

(continued from previous page)

References:

238

Chapter 1. Contents

Test Smells Catalog, Release 2.0

Quality attributes
* - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites
« Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.4.4.2 Complex Teardown

Definition:

* Complex fixture teardown code is more likely to leave test environment corrupted by not cleaning up correctly.
It is hard to verify that it has been written correctly and can easily result in “data leaks” that may later cause this
or other tests to fail for no apparent reason.

Code Example:

public void testGetFlightsByOrigin_NoInboudFlight_SMRTD() throws exception{
BigDecimal outboundAirport = createTestAirport("10F");
BigDecimal inboundAirport = null;
FlightDto expFlightDto = null;

try {
inboundAirport = createTestAirport("1IF");
expFlightDto =
createTestFlight (outboundAirport, inboundAirport);

List flightsAtDestinationl =
facade.getFlightsByOriginAirport(inboundAirport);

assertEquals(0, flightsAtDestinationl.size());
} finally {
try {
facade.removeFlight (expFlightDto.getFlightNumber());
} finally {
try {
facade.removeAirport(inboundAirport);
}finally {
facade.removeAirport (outboundAirport) ;
}
}
}
}

References:

Quality attributes

1.4. Issues in test steps 239

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

» xUnit test patterns: Refactoring test code

1.4.4.3 External Shared-State Corruption

Definition:
* Integration tests with shared resources and no rollback

Code Example:

Similar to shared-state corruption.

Tests touch shared resources (either in memory or in external resources,such as.
—.databases and filesystems)

without cleaning up or rolling back any changes they make to those resources.

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

 Chapter 8. The pillars of good unit tests

1.4.4.4 Generous Leftovers

Definition:

* An instance where one unit test creates data that is persisted somewhere, and another test reuses the data for its
own devious purposes. If the “generator” is ran afterward, or not at all, the test using that data will outright fail.

Also Known As:
* Wet Floor, Sloppy worker

References:

Quality attributes
* - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

240 Chapter 1. Contents

https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://apprize.best/c/unit/8.html

Test Smells Catalog, Release 2.0

* Anti-Patterns - Digital Tapestry
* Categorising Test Smells
* Test-Driven Development: TDD Anti-Patterns

 Unit Testing Anti-Patterns, Full List

1.4.4.5 Improper Clean Up After Tests Have Been Run

Definition:

* Improper cleanup occurs when the code that cleans up the mocks and anything created in the test is insufficient
or entirely lacking. It may leave files open or objects in memory causing memory leaks. This can be especially
important if your tests are doing any type of file manipulation or you are creating files specifically for testing.

References:

Quality attributes
* - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

e Anti-Patterns In Unit Testing

1.4.4.6 It Was Like That When | Got Here

Definition:

* atest fixture that doesn’t take any care over managiong the pre and post-test state, leading to all manner of side
effects, including The Leaky Cauldron and The Soloist

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

Test Smells - The Coding Craftsman

1.4. Issues in test steps 241

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://completedeveloperpodcast.com/anti-patterns-in-unit-testing/
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.4.4.7 Leaving Temporary Files Behind

Definition:

* File is not removed
Code Example:

* No code examples yet...

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Test Development Patterns and Anti-Patterns - Medium

1.4.4.8 Not Idempotent

Definition:

 Fancy words meaning your test changes the state of something permanently and thereby introduces the possibility

of order dependent tests.
Also Known As:
* Interacting Test With High Dependency

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Categorising Test Smells

* Smells of Testing (signs your tests are bad)

242

Chapter 1. Contents

https://medium.com/test-go-where/test-development-patterns-and-anti-patterns-78820e1802df
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://jakescruggs.blogspot.com/2009/04/smells-of-testing-signs-your-tests-are.html

Test Smells Catalog, Release 2.0

1.4.4.9 Shared-State Corruption

Definition:
¢ Tests sharing in-memory state without rolling back

Code Example:

public class SharedStateCorruption

{
// shared person state
Person person = new Person();

public void CreateAnalyzer_GooFileName_ReturnsTrue()
{
// changes shared state
person.AddNumber ("055-4556684(34)");
string found = person.FindPhoneStartingWith("055");
Assert.AreEqual ("055-4556684(34"), found)
}

public void FindPhoneStartingWith_NoNumbers_ReturnNull()
{
// reads shared state
string found = person.FindPhoneStartingWith("0");
Assert.IsNull(found);
}
}

References:

Quality attributes
e - Code Example
- Cause and Effect
* - Frequency

e - Refactoring

* Chapter 8. The pillars of good unit tests

1.4.4.10 Sloppy Worker

Definition:

» The test generates data but it omits dispensing with the data after finishing. This will cause itself and other tests

to fail on consecutive runs.
Also Known As:
¢ Generous Leftovers

References:

Quality attributes

1.4. Issues in test steps

243

https://apprize.best/c/unit/8.html

Test Smells Catalog, Release 2.0

¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

 Categorising Test Smells

1.4.4.11 Teardown Only Test

Definition:
e Test-suite only de ning teardown (unusual for unit tests)

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

e - Refactoring

* Automatic generation of smell-free unit tests
* Rule-based Assessment of Test Quality

 Test Smell Detection Tools: A Systematic Mapping Study

1.4.4.12 The Painful Clean-Up

Definition:

» where every test needs to build or clean up an expensive resource, like a database, as the separation of tests is
weak, or the test is too large

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

Test Smells - The Coding Craftsman

244 Chapter 1. Contents

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://repositorio.ul.pt/handle/10451/56819
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.4.4.13 The Soloist

Definition:
* atest that can only be run successfully when no other tests are running

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Test Smells - The Coding Craftsman

1.4.4.14 Unrepeatable Test

Definition:
* A test behaves differently the first time it is run than how it behaves on subsequent test runs.

Code Example:

Suite.run()--> Green
Suite.run()--> Test C fails
Suite.run()--> Test C fails
User resets something
Suite.run()--> Green
Suite.run()--> Test C fails
Suite.run()--> Test C fails

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Categorising Test Smells

» xUnit test patterns: Refactoring test code

1.4. Issues in test steps 245

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

1.4.4.15 Wet Floor

Definition:

* the test creates data that is persisted somewhere, but the test does not clean up when fin- ished. This causes tests

(the same test, or possibly other tests) to fail on subsequent test runs
Also Known As:
* Generous leftovers

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* Anti-Patterns - Digital Tapestry
» Smells in software test code: A survey of knowledge in industry and academia

* Unit testing Anti-patterns catalogue

1.5 Test execution - behavior

1.5.1 Other test execution - behavior

1.5.1.1 Abnormal Utf-Use

Definition:
* Test-suite overriding the default behavior of the unit testing framework

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Automatic generation of smell-free unit tests

* Rule-based Assessment of Test Quality

Test Smell Detection Tools: A Systematic Mapping Study

246

Chapter 1. Contents

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://repositorio.ul.pt/handle/10451/56819
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

1.5.1.2 Chatty Logging

Definition:

¢ Often a substitute for self-explanatory assertions or well defined test names, the test writes lots of data to the
console or logs in order to explain test failures outside of the assertions

Code Example:

public class LoginTest {
private WebDriver driver;

@Before

public void setUp() {
driver = new ChromeDriver();
driver.manage() .window() .maximize();

}

@After
public void tearDown() {
driver.quit(Q);

}

@Test

public void testValidLogin() {
LoginPage loginPage = new LoginPage(driver);
loginPage.enterUsername("testuser");
loginPage.enterPassword("password") ;
loginPage.clickLoginButton();

String expectedUrl = "https://example.com/dashboard";
String actualUrl = driver.getCurrentUrl();

if (actualUrl.equals(expectedUrl)) {
System.out.println("Login test passed.");
} else {
System.out.println("Login test failed. Expected URL:
—Actual URL: " + actualUrl);
}

+ expectedUrl + ",.

assertTrue(actualUrl.equals(expectedUrl));

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

1.5. Test execution - behavior 247

Test Smells Catalog, Release 2.0

* Test Smells - The Coding Craftsman

1.5.1.3 Frequent Debugging

Definition:

¢ Indicates when ambiguity in test results require developers to conduct additional, manual debugging to identify
the cause of the failed test.

Also Known As:
* Manual Debugging

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Automatic generation of smell-free unit tests

* Categorising Test Smells

* Inspecting Automated Test Code: A Preliminary Study

¢ Unit Test Smells and Accuracy of Software Engineering Student Test Suites

» xUnit test patterns: Refactoring test code

1.5.1.4 Interactive Test

Definition:

* An Interactive Test is a test that interrupts the automatic execution of a test, requiring manual actions from the
user, for example pressing a button, closing a window or entering some data.

Also Known As:
e Manual Intervention

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

¢ - Refactoring

* Assessing test quality - TestLint

248 Chapter 1. Contents

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://repositorio.ul.pt/handle/10451/56819
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://dl.acm.org/doi/abs/10.5555/1768961.1768982
https://dl.acm.org/doi/abs/10.1145/3430665.3456328?casa_token=igLWdXV-fTYAAAAA:UZiEPkDc2-NRE6_Zi0Q9FRDeUjeyZcdVTLO9Kzk53cVuo7LC-nC7m690pw6vZpQmMfa5ktOcw2pvFw
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.9594

Test Smells Catalog, Release 2.0

1.5.1.5 Manual Assertions

Definition:

¢ Manual assertions describes the scenarios where the JUnit assert or fail methods are ignored in favour of other
methods confirming program accuracy.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* JUnit Anti-patterns

1.5.1.6 Manual Event Injection

Definition:
* A person must intervene during test execution to perform some manual action before the test can proceed.

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Categorising Test Smells

» xUnit test patterns: Refactoring test code

1.5.1.7 Manual Fixture Setup

Definition:

¢ A person has to set up the test environment manually before the automated tests can be run. This may take the
form of configuring servers, starting server processes or running scripts to set up a Prebuilt Fixture

References:

Quality attributes
* - Code Example
¢ - Cause and Effect

* - Frequency

1.5. Test execution - behavior 249

https://exubero.com/junit/anti-patterns/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

e - Refactoring

* Categorising Test Smells

» xUnit test patterns: Refactoring test code

1.5.1.8 Manual Intervention

Definition:

* A test case requires manual changes before the test is run, otherwise the test fails
Also Known As:

* Interactive Test, Manual Testing, Manual Test

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

e - Refactoring

* Automatic generation of smell-free unit tests
* Categorising Test Smells
¢ Inspecting Automated Test Code: A Preliminary Study

» xUnit test patterns: Refactoring test code

1.5.1.9 Manual Result Verification

Definition:

* We can run the tests but they almost always pass even when we know that the SUT is not returning the correct
results.

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Categorising Test Smells

» xUnit test patterns: Refactoring test code

250 Chapter 1. Contents

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://repositorio.ul.pt/handle/10451/56819
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://dl.acm.org/doi/abs/10.5555/1768961.1768982
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

1.5.1.10 Print Statement

Definition:

* Print statements in unit tests are redundant as unit tests are executed as part of an automated script and do not
affect the failing or passing of test cases. Furthermore, they can increase execution time if the developer calls a
long-running method from within the print method (i.e., as a parameter).

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Automatic Identification of High-Impact Bug Report by Product and Test Code Quality

* On the diffusion of test smells and their relationship with test code quality of Java projects
* On the influence of Test Smells on Test Coverage

* On the test smells detection: an empirical study on the jnose test accuracy

* The secret life of test smells-an empirical study on test smell evolution and maintenance

1.5.1.11 Redundant Print

Definition:

* Print statements in unit tests are redundant as unit tests are executed as part of an automated. Furthermore, they
can consume computing resources or increase execution time if the developer calls an intensive/long-running
method from within the print method (i.e., as a parameter).

Code Example:

@Test
public void testTransformlOmNEUAndBack() {
Leg northEastAndUplOM = new Leg(10, 45, 45);
Coord3D result = transformer.transform(Coord3D.0ORIGIN, northEastAndUpl®M);
System.out.println("result = " + result);
Leg reverse = new Leg(10, 225, -45);
result = transformer.transform(result, reverse);

assertEquals(Coord3D.0ORIGIN, result);

References:

Quality attributes
e - Code Example
¢ - Cause and Effect

* - Frequency

1.5. Test execution - behavior 251

https://huang.zj.cn/pdf/J13.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://dl.acm.org/doi/10.1145/3350768.3350775
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://link.springer.com/article/10.1007/s10664-021-09969-1

Test Smells Catalog, Release 2.0

e - Refactoring

* A survey on test practitioners’ awareness of test smells

* An Exploratory Study on the Refactoring of Unit Test Files in Android Applications

» Automatic Identification of High-Impact Bug Report by Product and Test Code Quality
* Automatic generation of smell-free unit tests

* Handling Test Smells in Python: Results from a Mixed-Method Study

» How are test smells treated in the wild? A tale of two empirical studies

* Investigating Test Smells in JavaScript Test Code

* On the Distribution of “Simple Stupid Bugs” in Unit Test Files: An Exploratory Study
* On the distribution of test smells in open source Android applications: an exploratory study
* On the use of test smells for prediction of flaky tests

* PyNose: A Test Smell Detector For Python

* Pytest-Smell: a smell detection tool for Python unit tests

* Software Unit Test Smells

* TEMPY: Test Smell Detector for Python

* Test Smell Detection Tools: A Systematic Mapping Study

e What the Smell? An Empirical Investigation on the Distribution and Severity of Test Smells in Open Source
Android Applications

¢ tsDetect: an open source test smells detection tool

1.5.1.12 Requires Supervision

Definition:
* A testis not automatic — it needs user input to function. Someone has to watch the test and enter data periodically.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Smells of Testing (signs your tests are bad)

252 Chapter 1. Contents

https://arxiv.org/abs/2003.05613
https://dl.acm.org/doi/10.1145/3387940.3392189
https://huang.zj.cn/pdf/J13.pdf
https://repositorio.ul.pt/handle/10451/56819
https://dl.acm.org/doi/10.1145/3474624.3477066
https://sol.sbc.org.br/journals/index.php/jserd/article/download/1802/1807/7485
https://dl.acm.org/doi/10.1145/3482909.3482915
https://ieeexplore.ieee.org/document/9463091
https://dl.acm.org/doi/10.5555/3370272.3370293
https://dl.acm.org/doi/abs/10.1145/3482909.3482916
https://ieeexplore.ieee.org/document/9678615/
https://dl.acm.org/doi/10.1145/3533767.3543290
https://testsmells.org/
https://dl.acm.org/doi/10.1145/3555228.3555280
https://dl.acm.org/doi/10.1145/3463274.3463335
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://dl.acm.org/doi/10.1145/3368089.3417921
https://jakescruggs.blogspot.com/2009/04/smells-of-testing-signs-your-tests-are.html

Test Smells Catalog, Release 2.0

1.5.1.13 The Loudmouth

Definition:

* A unit test (or test suite) that clutters up the console with diagnostic messages, logging messages, and other
miscellaneous chatter, even when tests are passing. Sometimes during test creation there was a desire to manually
see output, but even though it’s no longer needed, it was left behind.

Also Known As:
* Transcripting Test

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

* Anti-Patterns - Digital Tapestry
 Categorising Test Smells
e Test-Driven Development: TDD Anti-Patterns

» Unit Testing Anti-Patterns, Full List

1.5.1.14 Transcripting Test

Definition:

e A Transcripting Test is writing information to the console or a global stream, for example the Transcript in
Smalltalk, while it is running.

Also Known As:
¢ The Loudmouth
Code Example:

HeapTest >> #testExamples
self shouldnt: [self heapExample] raise: Error.
self shouldnt: [self heapSortExample] raise: Error.

HeapTest >> #heapSortExample
"HeapTest new heapSortExample"
"Sort a random collection of Floats and compare the results with ...
| n rnd array time sorted |

(]

n := 10000. "# of elements to sort"
rnd := Random new.
Transcript cr; show:'Time for heap-sort: ', time printString,' msecs'.

"The quicksort version"

(continues on next page)

1.5. Test execution - behavior 253

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html

Test Smells Catalog, Release 2.0

(continued from previous page)

Transcript cr; show:'Time for quick-sort: ', time printString,' msecs'.

"The merge-sort version"

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Assessing test quality - TestLint
* Rule-based Assessment of Test Quality

* Test Smell Detection Tools: A Systematic Mapping Study

1.5.1.15 Trying To Use Ui Automation To Replace Manual Testing

Definition:

* The use of automation can drastically enhance the testing process. If used correctly, automation can reduce, not
replace the manual testing resources required.

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Top 17 Automated Testing Best Practices (Supported By Data)

1.5.1.16 Unnecessary Navigation

Definition:
* When the test has actions, taken for granted, not related to the things we want to check

Code Example:

public void CheckBookTitleDescriptionAndPrice_Versionl()
{
foreach (Book currentBook in testFile)
{
// Open the homepage
selenium.Open("/HomePage.html");
(continues on next page)

254 Chapter 1. Contents

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.9594
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335
https://ultimateqa.com/automation-patterns-antipatterns/

Test Smells Catalog, Release 2.0

(continued from previous page)

selenium.WaitForPageToLoad("30000");

// Login

selenium.Click("link=Login");
selenium.WaitForPageToLoad("30000");
selenium.Type("TxtUserName", "TestAccountl");
selenium.Type("'TxtPassword", "TestPasswordl");
selenium.Click("Submit");
selenium.WaitForPageToLoad("30000");

// Search for the book we want to check
selenium.Click("link=Search");
selenium.WaitForPageToLoad("30000");

selenium. Type("'TxtSearchTerm", currentBook.Title);
selenium.Click("Submit");
selenium.WaitForPageToLoad("30000");

// Open the Detailed Information page for the book we want to check

selenium.Click(currentBook.ID);

selenium.WaitForPageToLoad("30000");

// Check that the Detailed Information page has loaded
Assert.AreEqual ("Detailed Information page", selenium.GetTitle());

// Compare the information on the Detailed Information page to our expected.

—results

string actualBookTitle = selenium.GetText("BookTitle" + currentItem.ID);
Assert.AreEqual (actualBookTitle, currentBook.Title);

string actualBookDescription = selenium.GetText("'BookDescription” + currentItem.

~1ID);
Assert.AreEqual (actualBookDescription, currentBook.Description);
string actualBookPrice = selenium.GetText("BookPrice" + currentItem.ID);
Assert.AreEqual (actualBookPrice, currentBook.Price);

3

}

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

How test automation with selenium can fail

1.5. Test execution - behavior

255

https://mattarcherblog.wordpress.com/2010/11/29/how-test-automation-with-selenium-or-watir-can-fail/

Test Smells Catalog, Release 2.0

1.5.2 Performance

1.5.2.1 Asynchronous Test

Definition:
* A few tests take inordinately long to run; those tests contain explicit delays.

Code Example:

public class RequestHandlerThreadTest extends TestCase {
private static final int TWO_SECONDS = 3000;
public void testWasInitialized_Async() throws InterruptedException {
RequestHandlerThread sut = new RequestHandlerThread();

sut.startQ);

Thread.sleep(TWO_SECONDS) ;
assertTrue(sut.initializedSuccessfully());

}

public void testHandleOneRequest_Async() throws InterruptedException {
RequestHandlerThread sut = new RequestHandlerThread();
sut.start(Q;

enqueueRequest (makeSimpleRequest());
Thread.sleep (TWO_SECONDS) ;

assertEquals(l, sut.getNumberOfRequestsCompleted());
assertResponseEquals(makeSimpleResponse(), getResponse());

References:

Quality attributes
e - Code Example
* - Cause and Effect
e - Frequency

* - Refactoring

» xUnit test patterns: Refactoring test code

256 Chapter 1. Contents

https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

1.5.2.2 Factories Pulling Too Many Dependencies

Definition:

¢ Calling one factory may silently create many associated records, which accumulates to make the whole test suite
slow (more on that later)

Code Example:
.define do
factory :comment do
post
body "groundbreaking insight"
end
end
References:
Quality attributes

* - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Rails Testing Antipatterns: Fixtures and Factories

1.5.2.3 Hardcoded Sleep

Definition:

* Has to wait 30s for each test run
Code Example:

* No code examples yet...

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

¢ Test Development Patterns and Anti-Patterns - Medium

1.5. Test execution - behavior 257

https://semaphoreci.com/blog/2014/01/14/rails-testing-antipatterns-fixtures-and-factories.html
https://medium.com/test-go-where/test-development-patterns-and-anti-patterns-78820e1802df

Test Smells Catalog, Release 2.0

1.5.2.4 Inefficient Waits

Definition:
* Adding a hard-coded wait that tells the test to pause for x number of seconds is a code smell.

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Writing good gherkin

1.5.2.5 Long Running Tests

Definition:

* When the feedback loop of code, test, code gets too long it can encourage bad behavior.
Also Known As:

* Slow Test

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

Smells of Testing (signs your tests are bad)

1.5.2.6 Sleeping For Arbitrary Amount Of Time

Definition:
* When a test becomes fragile to network or processing congestion

Code Example:

[.sleep(4%1000);

References:

Quality attributes
¢ - Code Example

258 Chapter 1. Contents

https://techbeacon.com/app-dev-testing/7-ways-tidy-your-test-code
https://jakescruggs.blogspot.com/2009/04/smells-of-testing-signs-your-tests-are.html

Test Smells Catalog, Release 2.0

e - Cause and Effect
* - Frequency

* - Refactoring

e Anti-patterns in test automation

1.5.2.7 Sleepy Test

Definition:

* Developers introduce this smell when they need to pause execution of statements in a test method for a certain
duration (i.e., simulate an external event) and then continuing with execution. Explicitly causing a thread to sleep
can lead to unexpected results as the processing time for a task differs when executed in various environments
and configurations.

Code Example:

public void testEdictExternSearch() throws Exception {

final Intent i = new Intent(getInstrumentation().getContext(), ResultActivity.class);

i.setAction(ResultActivity.EDICT_ACTION_INTERCEPT);

i.putExtra(ResultActivity.EDICT_INTENTKEY_KANJIS, "");

tester.startActivity(i);

assertTrue(tester.getText(R.id.textSelectedDictionary) .contains("Default"));

final ListView lv = getActivity().getListView();

assertEquals(l, lv.getCount());

DictEntry entry = (DictEntry) lv.getItemAtPosition(0);

assertEquals("Searching"”, entry.english);

Thread.sleep(500);

final Intent i2 = getStartedActivityIntent();

final List result = (List) i2.getSerializableExtra(ResultActivity.INTENTKEY_RESULT_
LIST);

entry = result.get(0);

assertEquals("(adj-na,n,adj-no) blank space/vacuum/space/null (NUL)/(P)", entry.

—english);
assertEquals("", entry.getJapanese());
assertEquals("", entry.reading);
assertEquals(l, result.size());

}

References:

Quality attributes

e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* An Exploratory Study on the Refactoring of Unit Test Files in Android Applications

* Automatic Identification of High-Impact Bug Report by Product and Test Code Quality

1.5. Test execution - behavior 259

https://www.codementor.io/@mgawinecki/anti-patterns-in-test-automation-101c6vm5jz
https://dl.acm.org/doi/10.1145/3387940.3392189
https://huang.zj.cn/pdf/J13.pdf

Test Smells Catalog, Release 2.0

Automatic generation of smell-free unit tests

Characterizing High-Quality Test Methods: A First Empirical Study

Handling Test Smells in Python: Results from a Mixed-Method Study

Investigating Severity Thresholds for Test Smells

Investigating Test Smells in JavaScript Test Code

On the Distribution of “Simple Stupid Bugs” in Unit Test Files: An Exploratory Study

On the diffusion of test smells and their relationship with test code quality of Java projects
On the distribution of test smells in open source Android applications: an exploratory study
On the influence of Test Smells on Test Coverage

On the test smells detection: an empirical study on the jnose test accuracy

On the use of test smells for prediction of flaky tests

PyNose: A Test Smell Detector For Python

Pytest-Smell: a smell detection tool for Python unit tests

Software Unit Test Smells

TEMPY: Test Smell Detector for Python

Test Smell Detection Tools: A Systematic Mapping Study

The secret life of test smells-an empirical study on test smell evolution and maintenance
Understanding practitioners’ strategies to handle test smells: a multi-method study

What the Smell? An Empirical Investigation on the Distribution and Severity of Test Smells in Open Source
Android Applications

tsDetect: an open source test smells detection tool

1.5.2.8 Slow Component Usage

Definition:

A component of the SUT has high latency.

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

xUnit test patterns: Refactoring test code

260

Chapter 1. Contents

https://repositorio.ul.pt/handle/10451/56819
https://ieeexplore.ieee.org/document/9796158/
https://dl.acm.org/doi/10.1145/3474624.3477066
https://dl.acm.org/doi/abs/10.1145/3379597.3387453
https://dl.acm.org/doi/10.1145/3482909.3482915
https://ieeexplore.ieee.org/document/9463091
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://dl.acm.org/doi/10.5555/3370272.3370293
https://dl.acm.org/doi/10.1145/3350768.3350775
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://dl.acm.org/doi/abs/10.1145/3482909.3482916
https://ieeexplore.ieee.org/document/9678615/
https://dl.acm.org/doi/10.1145/3533767.3543290
https://testsmells.org/
https://dl.acm.org/doi/10.1145/3555228.3555280
https://dl.acm.org/doi/10.1145/3463274.3463335
https://link.springer.com/article/10.1007/s10664-021-09969-1
https://dl.acm.org/doi/10.1145/3474624.3474639
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://dl.acm.org/doi/10.1145/3368089.3417921
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

1.5.2.9 Slow Running Tests

Definition:
* If you have unit tests that take tens of milliseconds or more to run, you have a smell.

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

¢ Unit Testing Smells: What Are Your Tests Telling You?

1.5.2.10 Slow Test

Definition:

* Slow tests are kind of tests which take long enough to run
Also Known As:

* Long Running Test, The Slow Poke
Code Example:

class SlowTest <

def test_fast

assert true
end

def test_slow
.slow_method
assert true
end
end

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

e - Refactoring

* A testing anti-pattern safari

* Automatic generation of smell-free unit tests

1.5. Test execution - behavior 261

https://dzone.com/articles/unit-testing-smells-what-are-your-tests-telling-yo
https://www.youtube.com/watch?v=VBgySRk0VKY
https://repositorio.ul.pt/handle/10451/56819

Test Smells Catalog, Release 2.0

Categorising Test Smells

Inspecting Automated Test Code: A Preliminary Study

Investigating into Automated Test Patterns in Erratic Tests by Considering Complex Objects

What We Know About Smells in Software Test Code

xUnit test patterns: Refactoring test code

1.5.2.11 The Bandwidth Demander

Definition:

* a test that cannot be successfully run when the system’s running a little slowly, perhaps it has internal timing

issues that are set to thresholds that are too demanding of the build process

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Test Smells - The Coding Craftsman

1.5.2.12 The Slow Poke

Definition:

 Usually, it puts the test suite to execution and takes longer to finish and give the developer feedback.

Also Known As:

Slow Test

Code Example:

test('shoutd show Buggy on user interaction by keyboard', done => {

const wrapper = mount (

<Guide
guideContent={content}
currentHint={0}
showNext={false}
invalidCode={false}
afkExpirationTime={ 400}
/>

N

setTimeout () => {

wrapper .update();
expect (wrapper.find('BuggySleepy'). length).toBe(1l);

262

Chapter 1. Contents

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://dl.acm.org/doi/abs/10.5555/1768961.1768982
http://j.mecs-press.net/ijitcs/ijitcs-v7-n3/IJITCS-V7-N3-8.pdf
https://ieeexplore.ieee.org/document/8501942
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

* - Refactoring

* Anti-Patterns - Digital Tapestry

* TDD anti patterns - Chapter 1

* TDD anti-patterns - the liar, excessive setup, the giant, slow poke
* Test-Driven Development: TDD Anti-Patterns

* Unit Testing Anti-Patterns, Full List

* Unit testing Anti-patterns catalogue

1.5.2.13 The Temporal Tip Toe

Definition:

* atest that’s using timing to coordinate concurrent events, and only succeeding by good luck — ideally we should
use locks and observable events to coordinate any concurrent tests, rather than hope to get our timings just right

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Test Smells - The Coding Craftsman

1.5.2.14 Too Many Tests

Definition:
* There are so many tests that they are bound to take a long time to run regardless of how fast they execute.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect

* - Frequency

1.5. Test execution - behavior 263

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://www.codurance.com/publications/tdd-anti-patterns-chapter-1
https://marabesi.com/tdd/2021/08/28/tdd-anti-patterns.html
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

e - Refactoring

» xUnit test patterns: Refactoring test code

1.5.2.15 Wait And See

Definition:

* A test that runs some set up code and then needs to ‘wait’ a specific amount of time before it can ‘see’ if the code
under test functioned as expected. A testMethod that uses Thread.sleep() or equivalent is most certainly a “Wait
and See” test.

Also Known As:
e The Local Hero

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Anti-Patterns - Digital Tapestry

» Unit testing Anti-patterns catalogue

1.6 Test semantic - logic

1.6.1 Other test logic related

1.6.1.1 Anal Probe

Definition:

* A test which has to use insane, illegal or otherwise unhealthy ways to perform its task like: Reading private fields
using Java’s setAccessible(true) or extending a class to access protected fields/methods or having to put the test
in a certain package to access package global fields/methods.

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

264 Chapter 1. Contents

https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue

Test Smells Catalog, Release 2.0

» Categorising Test Smells
* Unit Testing Anti-Patterns, Full List

* Unit testing Anti-patterns catalogue

1.6.1.2 Assert1=2

Definition:

* A case of developer simply yanking on the emergency brake whenever the code has dropped into a state that they
didn’t know how to handle.

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

* Abap assertion anti-patterns

1.6.1.3 Asynchronous Code

Definition:

* A class cannot be tested via direct method calls. The test must start up an executable (such as a thread, process
or application) and wait until it has finished starting up before interacting with it.

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

e - Refactoring

» xUnit test patterns: Refactoring test code

1.6. Test semantic - logic 265

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://blogs.sap.com/2013/02/14/abap-assertion-anti-patterns/
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

1.6.1.4 Branch To Assumption Anti-Pattern

Definition:
¢ An assumption is conditionally executed.

Code Example:

void Test(int i, int j) {
if (4 <)
PexAssume.IsTrue(j > 0);

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

» Parameterized Test Patterns For Effective Testing with Pex

1.6.1.5 Chafing

Definition:

* A test in which the author attempts to eliminate as much textual duplication as possible, even if the indirection it
introduces confuses future readers of the intention and behavior of the test.

Code Example:

Subject under test
def pricing_for_code(code)
first_factor = 0

first_factor = 65 if code[0] == 'A'
first_factor = 55 if code[0] == '7'
first_factor = 40 if code[0] == '('

second_factor = 0

second_factor = 21 if code.size == 3
second_factor = 19 if code.size == 5
second_factor = 16 if code.size == 8

return first_factor * second_factor
end

Test
require_relative

'../../../support/ruby/generate_code"

class Chafing <
(continues on next page)

266 Chapter 1. Contents

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.6145&rep=rep1&type=pdf

Test Smells Catalog, Release 2.0

(continued from previous page)

def test_code_one_is_correct
code = .one()

result = pricing_for_code(code)

assert_code_pricing code, result
end

def test_code_two_is_correct
code = .two ()

result = pricing_for_code(code)

assert_code_pricing code, result
end

def test_code_three_is_correct
code = .three()

result = pricing_for_code(code)
assert_code_pricing code, result

end
end

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* A workbook repository of example test smells and what to do about them

1.6.1.6 Complex Conditional

Definition:
* A conditional expression is composed of many boolean conjunctions.

Code Example:

function calculateAmount(integer year) return float {
var float amount;
if (((year mod 4) == 0 and not (year mod 100) == 0) or (year mod 400) == 0) {
amount := BASE AMOUNT 366;
} else {
amount := BASE AMOUNT 365;

(continues on next page)

1.6. Test semantic - logic 267

https://github.com/testdouble/test-smells

Test Smells Catalog, Release 2.0

(continued from previous page)

3

return amount;

}

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

» Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.6.1.7 Conditional Assertions

Definition:
* it makes your test non-deterministic: you will never be sure which path will be verified in the next pass

Code Example:

if (existsInSystem(testUser)) {
// test for existing user...

} else {
// test for not existing user...

}

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

e Anti-patterns in test automation
* On the Maintenance of System User Interactive Tests
e Smells in System User Interactive Tests

* Test Smells - The Coding Craftsman

268 Chapter 1. Contents

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16
https://www.codementor.io/@mgawinecki/anti-patterns-in-test-automation-101c6vm5jz
https://orbilu.uni.lu/handle/10993/48254
https://arxiv.org/abs/2111.02317
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.6.1.8 Conditional Logic Test

Definition:
¢ Test methods that contain conditional statements

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Handling Test Smells in Python: Results from a Mixed-Method Study

1.6.1.9 Conditional Logic

Definition:

* Breaks the linear execution path of a test, making it less obvious which parts of the tests get executed. This
increases a test’s complexity and maintenance costs.

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Rule-based Assessment of Test Quality

1.6.1.10 Conditional Test Logic

Definition:

* Test methods need to be simple and execute all statements in the production method. Conditions within the test
method will alter the behavior of the test and its expected output, and would lead to situations where the test fails
to detect defects in the production method since test statements were not executed as a condition was not met.
Furthermore, conditional code within a test method negatively impacts the ease of comprehension by developers.

Also Known As:
¢ Indented Test Code, Guarded Test
Code Example:

1.6. Test semantic - logic 269

https://dl.acm.org/doi/10.1145/3474624.3477066
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf

Test Smells Catalog, Release 2.0

@Test
public void testSpinner() {
for (Map.Entry entry : sourcesMap.entrySet()) {

String id = entry.getKey(Q);

Object resultObject = resultsMap.get(id);

if (resultObject instanceof EventsModel) {
EventsModel result = (EventsModel) resultObject;
if (result.testSpinner.runTest) {

System.out.println("Testing " + id + " (testSpinner)");
//System.out.println(result);
AnswerObject answer = new AnswerObject(entry.getValue(), "", new.
—.CookieManager(), "");
EventsScraper scraper = new EventsScraper (RuntimeEnvironment.application,
<, answer);
SpinnerAdapter spinnerAdapter = scraper.spinnerAdapter();
assertEquals(spinnerAdapter.getCount(), result.testSpinner.data.size());
for (int i = 0; i < spinnerAdapter.getCount(); i++) {
assertEquals(spinnerAdapter.getItem(i), result.testSpinner.data.
—get(i));
}
}
}
}
}
References:
Quality attributes

e - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* A survey on test practitioners’ awareness of test smells

* An Exploratory Study on the Refactoring of Unit Test Files in Android Applications

* Anti-patterns of automated testing

* Automatic Identification of High-Impact Bug Report by Product and Test Code Quality
* Automatic generation of smell-free unit tests

 Categorising Test Smells

* Detection of test smells with basic language analysis methods and its evaluation

* Did You Remember To Test Your Tokens?

» Enhancing developers’ awareness on test suites’ quality with test smell summaries

e Handling Test Smells in Python: Results from a Mixed-Method Study

* How are test smells treated in the wild? A tale of two empirical studies

270 Chapter 1. Contents

https://arxiv.org/abs/2003.05613
https://dl.acm.org/doi/10.1145/3387940.3392189
https://medium.com/swlh/anti-patterns-of-automated-software-testing-b396283a4cb6
https://huang.zj.cn/pdf/J13.pdf
https://repositorio.ul.pt/handle/10451/56819
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/10123551/
https://dl.acm.org/doi/10.1145/3379597.3387471
https://lutpub.lut.fi/handle/10024/158751
https://dl.acm.org/doi/10.1145/3474624.3477066
https://sol.sbc.org.br/journals/index.php/jserd/article/download/1802/1807/7485

Test Smells Catalog, Release 2.0

* Hunting for smells in natural language tests

* Improving Student Testing Practices through a Lightweight Checklist Intervention.

* Inspecting Automated Test Code: A Preliminary Study

* Investigating Severity Thresholds for Test Smells

* Investigating Test Smells in JavaScript Test Code

* On the Distribution of “Simple Stupid Bugs” in Unit Test Files: An Exploratory Study

* On the diffusion of test smells and their relationship with test code quality of Java projects
* On the distribution of test smells in open source Android applications: an exploratory study
* On the influence of Test Smells on Test Coverage

* On the test smells detection: an empirical study on the jnose test accuracy

* On the use of test smells for prediction of flaky tests

* PyNose: A Test Smell Detector For Python

* Pytest-Smell: a smell detection tool for Python unit tests

 Refactoring Test Smells With JUnit 5: Why Should Developers Keep Up-to-Date?
 Refactoring Test Smells: A Perspective from Open-Source Developers

* Rule-based Assessment of Test Quality

* Smart prediction for refactorings in the software test code

* Software Unit Test Smells

e TEMPY: Test Smell Detector for Python

e Test Smell Detection Tools: A Systematic Mapping Study

* Test code quality and its relation to issue handling performance

* TestAXE: Automatically Refactoring Test Smells Using JUnit 5 Features

» The secret life of test smells-an empirical study on test smell evolution and maintenance
e Toward static test flakiness prediction: a feasibility study

* Understanding Testability and Test Smells

 Understanding practitioners’ strategies to handle test smells: a multi-method study

* Unit Test Smells and Accuracy of Software Engineering Student Test Suites

e What the Smell? An Empirical Investigation on the Distribution and Severity of Test Smells in Open Source
Android Applications

* tsDetect: an open source test smells detection tool
» xUnit test patterns: Refactoring test code

» xUnit test patterns: Refactoring test code

1.6. Test semantic - logic 271

https://ieeexplore.ieee.org/abstract/document/6606682
https://repository.lib.ncsu.edu/bitstream/handle/1840.20/39743/etd.pdf?sequence=1
https://dl.acm.org/doi/abs/10.5555/1768961.1768982
https://dl.acm.org/doi/abs/10.1145/3379597.3387453
https://dl.acm.org/doi/10.1145/3482909.3482915
https://ieeexplore.ieee.org/document/9463091
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://dl.acm.org/doi/10.5555/3370272.3370293
https://dl.acm.org/doi/10.1145/3350768.3350775
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://dl.acm.org/doi/abs/10.1145/3482909.3482916
https://ieeexplore.ieee.org/document/9678615/
https://dl.acm.org/doi/10.1145/3533767.3543290
https://ieeexplore.ieee.org/document/9769994/
https://dl.acm.org/doi/10.1145/3425174.3425212
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3474624.3477070
https://testsmells.org/
https://dl.acm.org/doi/10.1145/3555228.3555280
https://dl.acm.org/doi/10.1145/3463274.3463335
https://ieeexplore.ieee.org/abstract/document/6862882/
https://sol.sbc.org.br/index.php/cbsoft_estendido/article/view/22311
https://link.springer.com/article/10.1007/s10664-021-09969-1
https://dl.acm.org/doi/10.1145/3472674.3473981
https://www.designite-tools.com/blog/understanding-testability-test-smells
https://dl.acm.org/doi/10.1145/3474624.3474639
https://dl.acm.org/doi/abs/10.1145/3430665.3456328?casa_token=igLWdXV-fTYAAAAA:UZiEPkDc2-NRE6_Zi0Q9FRDeUjeyZcdVTLO9Kzk53cVuo7LC-nC7m690pw6vZpQmMfa5ktOcw2pvFw
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://dl.acm.org/doi/10.1145/3368089.3417921
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

1.6.1.11 Conditional Tests

Definition:
¢ Tests are very complex and contain conditional logic that is phrased in natural language

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Hunting for smells in natural language tests

1.6.1.12 Conditional Verification Logic

Definition:

* This is usually caused by wanting to prevent the execution of assertions if the SUT fails to return the right objects
or the use of loops to verify the contents of collections returned by the SUT.

Code Example:

public void testCombinationsOfInputValues() {
Calculator sut = new Calculator();
int expected;

for (dnt i = 0; i < 10; i++){
for(int j = 0 ; j < 10; j++){

int acutal = sut.calculate(i , j);

if(i==3 & j==4)

expected = 8;
} else {
expected = i+j;
}
assertEquals(message(i, j), expected, actual);
}
}
}
private String message(int i, int j) {
return "Cell (" + String.valueOf(i) + ", " + String.valueOf(j) + ")";
}
References:
Quality attributes

272 Chapter 1. Contents

https://ieeexplore.ieee.org/abstract/document/6606682

Test Smells Catalog, Release 2.0

¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

» xUnit test patterns: Refactoring test code

1.6.1.13 Conditionals In Tests

Definition:
* having “ifs” in tests is wrong; it’s proof that you need another test scenario

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

e - Refactoring

* Anti-patterns of automated testing

1.6.1.14 Contaminated Test Subject

Definition:

* A test somehow morphs its subject into something less realistic for its own purposes and without regard for the
resulting erosion in our confidence that the test ensures the subject’s behavior under real-world conditions.

Code Example:

Subject under test
require "time"

class SavingsBond
def initialize(start_date, mature_value, term_in_years)
@start_date = start_date
@mature_value = mature_value
@term_in_years = term_in_years
end

def current_value
if mature?
@mature_value
else
elapsed = today - @start_date
term_duration = mature_date - @start_date

(continues on next page)

1.6. Test semantic - logic 273

https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://medium.com/swlh/anti-patterns-of-automated-software-testing-b396283a4cb6

Test Smells Catalog, Release 2.0

(@mature_value * (elapsed / term_duration)).round
end
end
end

Test

class ContaminatedTestSubject < SmellTest
def setup
@subject = SavingsBond.new(
Time.new(2000, 5, 15),
1000,
10
)

end

def test_when_mature_current_value_is_mature_value
stub(@subject, :mature?, true)

result = @subject.current_value

assert_equal 1000, result
end

def test_when_immature_current_value_is_prorated
stub(@subject, :mature?, false)
stub(@subject, :today, Time.new(2005, 5, 15))

result = @subject.current_value

assert_equal 500, result
end
end

Fake production implementations to simplify example test of subject
class SavingsBond
def mature?
mature_date - Time.new > 0
end

def mature_date
@start_date + term_in_seconds
end

def term_in_seconds
@term_in_years * 365.25 * 24 * 60 * 60
end

def today
Time.new
end
end

(continued from previous page)

274

Chapter 1. Contents

Test Smells Catalog, Release 2.0

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

* - Refactoring

* A workbook repository of example test smells and what to do about them

1.6.1.15 Context-Dependent Rotten Green Assertion Test

Definition:
* Tests contain multiple conditional branches with different assertions in each branch

Code Example:

@Test public void testCoGroupLambda(){
CoGroupFunction<Tuple2<...>> f = (il,i2,0) > { } ;
TypeInformation<?> ti = TypeExtractor.getCoGroupReturnTypes(f, . . .) ;

if (! (ti instanceof MissingTypeInfo)){
assertTrue(ti.isTupleType());
assertEquals(2, ti.getArity(Q));

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* RTj: a Java framework for detecting and refactoring rotten green test cases

* Rotten green tests in Java, Pharo and Python

1.6. Test semantic - logic 275

https://github.com/testdouble/test-smells
https://dl.acm.org/doi/10.1145/3377812.3382151
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s10664-021-10016-2&casa_token=8C-rVSu9l74AAAAA:2s5rmzBFiH74xHZlTdpZsQCxwqL4cYIbWRH6Bdq1ehTjnxcpOwi8PPkhDrhKpHqjdrQf1_ZXaVRy5BysSQ

Test Smells Catalog, Release 2.0

1.6.1.16 Control Logic

Definition:
* A test method that controls test data flow by methods such as debug or halt

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

* Rule-based Assessment of Test Quality

Test Smell Detection Tools: A Systematic Mapping Study

1.6.1.17 Easy Tests

Definition:

* This kind of test only checks simple things of the production code but it neglects the real logic of it.
Also Known As:

* The Dodger

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

» Categorising Test Smells

1.6.1.18 Embedding Implementation Detail In Your Features/Scenarios

Definition:

* Acceptance test scenarios are meant to convey intention over implementation. If you start seeing things like
URLs in your test scenarios you're focusing on implementation.

Code Example:

Scenario: Social media links displayed on checkout page Given I am the checkout page for Australia Then
I should see a link to ‘http:/twitter.com/beautifultea’ And I should see a link to ‘https://facebook.com/
beautifultea’

276 Chapter 1. Contents

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
http://twitter.com/beautifultea
https://facebook.com/beautifultea
https://facebook.com/beautifultea

Test Smells Catalog, Release 2.0

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

* Five automated acceptance test anti-patterns

1.6.1.19 Evolve Or

Definition:

* Tests that are not maintained after SUT code evolution and still pass

Code Example:
public class TransactionTest {
@Test
public void shouldRecognizeTransactionsWithZeroValueAsInvalid() {
//given

Transaction tx = new Transaction(BigDecimal.ZERO,
new InternalUser());
//when
boolean actual = tx.validate();
//then
assertThat(actual).isFalse();
}

@Test
public void shouldRecognizeTransactionWithNegativeValueAsInvalid() {
//given
Transaction tx = new Transaction(BigDecimal.ONE.negate(),
new InternalUser());
//when
boolean actual = tx.validate();
//then
assertThat(actual) .isFalse();

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

1.6. Test semantic - logic

277

https://alisterbscott.com/2015/01/20/five-automated-acceptance-test-anti-patterns/

Test Smells Catalog, Release 2.0

* Bad tests, good tests

1.6.1.20 Factories With Random Data Instead Of Sequences

Definition:

* When used alongside factories, random data generators may compromise the reliability of a test suite.

Code Example:

#Random factory

.define do
factory :category do
name { o .word.capitalize }
end
end

#Sequence factory

.define do
factory :category do

sequence(:name) { |n| "Category number #{n}" }

end
end

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Rails Testing Antipatterns: Fixtures and Factories

1.6.1.21 Flexible Test

Definition:

* Test code verifies different functionality depending on when or where it is run.

Code Example:

public void testDisplayCurrentTime_whenever() {
// fixture setup
TimeDisplay sut = new TimeDisplay(Q);

// exercise SUT

(continues on next page)

278

Chapter 1. Contents

http://kaczanowscy.pl/books/bad_tests_good_tests.html
https://semaphoreci.com/blog/2014/01/14/rails-testing-antipatterns-fixtures-and-factories.html

Test Smells Catalog, Release 2.0

String result = sut.getCurrentTimeAsHtmlFragment() ;

// verify outcome

Calendar time = new DefaultTimeProvider().getTime();
StringBuffer expectedTime = new StringBuffer();
expectedTime.append("");

if ((time.get(Calendar.HOUR_OF_DAY) == 0)

&& (time.get(Calendar.MINUTE) <= 1)) {
expectedTime.append("Midnight");

} else if ((time.get(Calendar.HOUR_OF_DAY) == 12)
&& (time.get(Calendar.MINUTE) == 0)) { // noon
expectedTime.append("Noon");

} else {

SimpleDateFormat fr = new SimpleDateFormat("h:mm a");
expectedTime.append(fr. format(time.getTime()));

}

expectedTime.append(''");

assertEquals(expectedTime, result);

(continued from previous page)

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

* - Refactoring

» xUnit test patterns: Refactoring test code

1.6.1.22 Fully Rotten Green Test

Definition:
¢ Contains an assertion which was forced to fail.

Code Example:

@Test
public void testListWindowsNewBucket() throws Exception {

BucketLeapArray leapArray = new BucketlLeapArray(sampleCount,
intervalInMs);

List<WindowWrap<MetricBucket>> list = leapArray.list(Q);
for (WindowWrap<MetricBucket> wrap : list) {
assertTrue(windowWraps.contains(wrap)) ;

}

(continues on next page)

1.6. Test semantic - logic

279

https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

(continued from previous page)

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* RTj: a Java framework for detecting and refactoring rotten green test cases

* Rotten green tests in Java, Pharo and Python

1.6.1.23 Generative

Definition:

* A test loops over a data structure of discrete inputs and expected outputs to generate test cases.

Code Example:

Subject under test
def to_arabic(roman)

roman.chars.each_with_index.map { [x, i

next_x = roman[i + 1]
if x == "1I"

["v", "X"].include?(next_x) ? -1 :

elsif x == "V"
next_x == "X" ? -5 : 5
elsif x == "X"
next_x == "C" ? -10 : 10
end
}.reduce(:+)
end

Test
class Generative <
= {

I = 1l
"II" = 2,
"III" => 3,
"IV" = 4,
"vV' => 5,
"VI" => 6,
"VII" = 7,
"VIII" => 8,
"IX" = 9,
"X" => 10

(continues on next page)

280

Chapter 1. Contents

https://dl.acm.org/doi/10.1145/3377812.3382151
https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/s10664-021-10016-2&casa_token=8C-rVSu9l74AAAAA:2s5rmzBFiH74xHZlTdpZsQCxwqL4cYIbWRH6Bdq1ehTjnxcpOwi8PPkhDrhKpHqjdrQf1_ZXaVRy5BysSQ

Test Smells Catalog, Release 2.0

(continued from previous page)

}.each do | (roman, arabic) |
define_method "test_roman_#{roman}_is_#{arabic}" do
result = to_arabic(roman)

assert_equal result, arabic
end
end
end

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* A workbook repository of example test smells and what to do about them

1.6.1.24 Get Really Clever And Use Random Numbers In Your Tests

Definition:
* considering using random numbers in tests as being a smell

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Smells in software test code: A survey of knowledge in industry and academia

1.6.1.25 Ground Zero

Definition:
* Where the lack of testing with O is the source of a lot of bugs.

Code Example:

// ensuring that there’s a value for and then testing that it’s off screen
// but if element.top is equals to 0, results goes wrong
if (element.top && (element.top < viewport.top)) {
(continues on next page)

1.6. Test semantic - logic 281

https://github.com/testdouble/test-smells
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060

Test Smells Catalog, Release 2.0

(continued from previous page)

hidePane();
}

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

Test Smells - The Coding Craftsman

1.6.1.26 Guarded Test

Definition:

* Guarded Tests include boolean branching logics like ifTrue: or ifFalse:
Also Known As:

 Conditional Test Logic

Code Example:

testRendering
self shouldRun ifFalse: [A true].
self assert:

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

e - Refactoring

* Assessing test quality - TestLint

* Rule-based Assessment of Test Quality

Test Smell Detection Tools: A Systematic Mapping Study

282 Chapter 1. Contents

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.144.9594
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://dl.acm.org/doi/10.1145/3463274.3463335

Test Smells Catalog, Release 2.0

1.6.1.27 Happy Path

Definition:

* A test that uses known input, which executes without exception and produces an expected output.

Code Example:

@Test

public void shouldProcessPacket() throws IOException, ServletException {
//given
given(request.getParameter (PacketApi.PACKET_PARAMETER))
.willReturn(PACKET);
given(request.getParameter (PacketApi.TYPE_PARAMETER))
.WwillReturn(TYPE);
//when
servlet.doGet (request, response);
//then
verify(packetDataProcessor) .process(PACKET, TYPE);

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

* Anti-Patterns - Digital Tapestry

* Bad tests, good tests

* Categorising Test Smells

* Improving Student Testing Practices through a Lightweight Checklist Intervention.
» Smells in software test code: A survey of knowledge in industry and academia

e Unit Testing Anti-Patterns, Full List

¢ Unit testing Anti-patterns catalogue

1.6.1.28 | Wrote It Like This

Definition:
* testing the known implementation rather than the outcome of that implementation.

References:

Quality attributes
¢ - Code Example

e - Cause and Effect

1.6. Test semantic - logic

283

https://digitaltapestry.net/testify/manual/AntiPatterns.html
http://kaczanowscy.pl/books/bad_tests_good_tests.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://repository.lib.ncsu.edu/bitstream/handle/1840.20/39743/etd.pdf?sequence=1
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue

Test Smells Catalog, Release 2.0

* - Frequency

* - Refactoring

 Test Smells - The Coding Craftsman

1.6.1.29 Incidental Details

Definition:

¢ Rambling long scenarios with lots of incidental details can ruin a good story. Often times the scenarios are

written as a test, rather than documentation, which can lead to fluffy scenarios.

References:

Quality attributes

* - Code Example

- Cause and Effect
- Frequency

- Refactoring

Cucumber anti-patterns (part one)

1.6.1.30 Inconsistent Wording

Definition:

* Domain concepts are not used in a consistent way (e. g., several names are used for the same domain concept).

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Hunting for smells in natural language tests

284

Chapter 1. Contents

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/
https://cucumber.io/blog/bdd/cucumber-antipatterns-part-one/
https://ieeexplore.ieee.org/abstract/document/6606682

Test Smells Catalog, Release 2.0

1.6.1.31 Indecisive

Definition:

* A test contains branching logic. Of course, test-scoped logic is always risky, since it is itself untested. But this
smell portends some deeper issues worth discussing.

Code Example:

Subject under test
require 'rbconfig'

def join_path(fragments)

if /mswin/ =~ 38 ['host_os']
separator = "\\"
pattern = /\\+/
else
separator = "/"
pattern = /\/+/
end
fragments. join(separator) .gsub(pattern, separator)
end
Test

class Indecisive <
def test_simple_case
fragments = ["foo", "bar", "baz"]

result = join_path(fragments)

if /mswin/ =~ o ¢ ['host_os']
assert_equal "foo\\bar\\baz", result
else
assert_equal "foo/bar/baz", result
end
end

def test_contains_separators

if /mswin/ =~ oC ['host_os']
fragments = ["\\foo\\", "bar\\biz", "baz\\"]
else
fragments = ["/foo/", "bar/biz", "baz/"]
end

result = join_path(fragments)

if /mswin/ =~ o ¢ ['host_os']
assert_equal "\\foo\\bar\\biz\\baz\\", result
else
assert_equal "/foo/bar/biz/baz/", result
end
end
end
References:

1.6. Test semantic - logic 285

Test Smells Catalog, Release 2.0

Quality attributes
* - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* A workbook repository of example test smells and what to do about them

1.6.1.32 Indented Test

Definition:
* A test method that contains a large number of decision points, loops, and conditional statements

References:

Quality attributes
* - Code Example
e - Cause and Effect
* - Frequency

- Refactoring

¢ Test Smell Detection Tools: A Systematic Mapping Study

» TestQ: Exploring Structural and Maintenance Characteristics of Unit Test Suites

1.6.1.33 Insufficient Grouping

Definition:

* A module or group contains too many elements. Especially for large modules, groups should be used to add
logical structure to the module and enhance readability. If a group reaches a critical size, it can be structured
further by subgroups.

Code Example:

module InsufficientGrouping {
type record myRecordTypel { // .
}

type record myRecordType2 { // .
}

type record myRecordType3 { // .
}

type record myRecordTyped4 { // .
}

(continues on next page)

286 Chapter 1. Contents

https://github.com/testdouble/test-smells
https://dl.acm.org/doi/10.1145/3463274.3463335
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.6409&rep=rep1&type=pdf

Test Smells Catalog, Release 2.0

(continued from previous page)

type record myRecordType5 { // .
}

template myRecordTypel myTemplatel := { // .

}

template myRecordTypel myTemplate2 := { // .

}

template myRecordTypel myTemplate3 := { // .

}

template myRecordTypel myTemplate4 := { // .
}

template myRecordTypel myTemplate5 := { // .

}

function f1C) { // .
}

// more declarations here

}

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

» Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.6.1.34 Invalid Test Data

Definition:
¢ when the test data would not be valid if used in real life — does this make the test invalid or not?

References:

Quality attributes
* - Code Example

1.6. Test semantic - logic 287

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16

Test Smells Catalog, Release 2.0

e - Cause and Effect
* - Frequency

* - Refactoring

* Test Smells - The Coding Craftsman

1.6.1.35 Invasion Of Privacy

Definition:
* A test is written directly against a method that’s intended to be a private implementation detail of the subject.

Code Example:

Subject under test
class SeatMap
def initialize(ticket, original_seat)
@fare_class = ticket.fare_class
@current_seat = original_seat
end

def moveTo(new_seat)
raise "No seat selected" unless new_seat
raise "Invalid seat selected" unless /A\d\d?[A-]]$/.test(new_seat)

if qualify_fare_class_for_seat(new_seat)
@current_seat = new_seat
else
raise Error "Seat not available for ticket's fare class"
end
end

private

Private API! Don't call this!
def qualify_fare_class_for_seat(seat)
return unless seat

if row_match = seat.match(/A(\d+)/)
row = row_match[0].to_i
row > 10
end
end
end

Test
class InvasionOfPrivacy < SmellTest
def setup
@ticket = OpenStruct.new(fare_class: "M")
@subject = SeatMap.new(@ticket, "18D")
super
end

(continues on next page)

288 Chapter 1. Contents

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

(continued from previous page)

def test_ensure_seat_not_null
result = @subject.send(:qualify_fare_class_for_seat, nil)

refute result
end

def test_do_not_break_if_seat_lacks_a_row_number
result = @subject.send(:qualify_fare_class_for_seat, "A")

refute result
end

def test_approve_if_behind_row_ten
result = @subject.send(:qualify_fare_class_for_seat, "11B")

assert_equal true, result
end

def test_deny_if ahead_of_row_ten
result = @subject.send(:qualify_fare_class_for_seat, "9]")

refute result
end
end

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* A workbook repository of example test smells and what to do about them

* Smells in software test code: A survey of knowledge in industry and academia

1.6.1.36 Lazy Test

Definition:

* More than one test case with the same fixture that tests the same method. This smell affects test maintainability,
as assertions testing the same method should be in the same test case. Like EAGER TEST, the original definition
[3] leaves some details to interpretation. We consider every call to the class under test as a potential cause of
LAZY TEST, irrespective of whether their results are used in an assertion.

Code Example:

1.6. Test semantic - logic 289

https://github.com/testdouble/test-smells
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060

Tes

t Smells Catalog, Release 2.0

@Te
pub

—d
}

@Te
pub

st

lic void testDecrypt() throws Exception {

FileInputStream file = new FileInputStream(ENCRYPTED_DATA_FILE_4_14);
byte[] enfileData = new byte[file.available()];

FileInputStream input = new FileInputStream(DECRYPTED_DATA_FILE 4_14);
byte[] fileData = new byte[input.available()];

input.read(fileData);

input.close();

file.read(enfileData);

file.close(Q);

String expectedResult = new String(fileData, "UTF-8");
assertEquals("Testing simple decrypt",expectedResult, Cryptographer.
ecrypt(enfileData, "test"));

st

lic void testEncrypt() throws Exception {

String xml = readFileAsString(DECRYPTED_DATA_FILE_4_14);
byte[] encrypted = Cryptographer.encrypt(xml, "test");
String decrypt = Cryptographer.decrypt(encrypted, "test");
assertEquals(xml, decrypt);

}
References:
Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency
¢ - Refactoring
* An Empirical Study into the Relationship Between Class Features and Test Smells
* An Exploratory Study on the Refactoring of Unit Test Files in Android Applications
* An empirical analysis of the distribution of unit test smells and their impact on software maintenance
* An exploratory study of the relationship between software test smells and fault-proneness
* Are test smells really harmful? An empirical study
» Assessing diffusion and perception of test smells in scala projects
» Automatic Identification of High-Impact Bug Report by Product and Test Code Quality
* Automatic generation of smell-free unit tests
* Categorising Test Smells
* Developers perception on the severity of test smells: an empirical study
» Enhancing developers’ awareness on test suites’ quality with test smell summaries
e Handling Test Smells in Python: Results from a Mixed-Method Study
¢ Investigating Test Smells in JavaScript Test Code
290 Chapter 1. Contents

https://ieeexplore.ieee.org/document/7890581
https://dl.acm.org/doi/10.1145/3387940.3392189
https://ieeexplore.ieee.org/document/6405253
https://ieeexplore.ieee.org/abstract/document/8847402/
https://link.springer.com/article/10.1007/s10664-014-9313-0
https://dl.acm.org/doi/10.1109/MSR.2019.00072
https://huang.zj.cn/pdf/J13.pdf
https://repositorio.ul.pt/handle/10451/56819
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://arxiv.org/abs/2107.13902
https://lutpub.lut.fi/handle/10024/158751
https://dl.acm.org/doi/10.1145/3474624.3477066
https://dl.acm.org/doi/10.1145/3482909.3482915

Test Smells Catalog, Release 2.0

On the diffusion of test smells and their relationship with test code quality of Java projects
On the distribution of test smells in open source Android applications: an exploratory study
On the influence of Test Smells on Test Coverage

On the interplay between software testing and evolution and its effect on program comprehension
On the test smells detection: an empirical study on the jnose test accuracy

On the use of test smells for prediction of flaky tests

Refactoring Test Code

Refactoring Test Smells With JUnit 5: Why Should Developers Keep Up-to-Date?
SoCRATES: Scala radar for test smells

Software Unit Test Smells

Test Smell Detection Tools: A Systematic Mapping Study

The secret life of test smells-an empirical study on test smell evolution and maintenance

What the Smell? An Empirical Investigation on the Distribution and Severity of Test Smells in Open Source
Android Applications

tsDetect: an open source test smells detection tool

1.6.1.37 London School Orthodoxy

Definition:

Unit tests should primarily target public APIs. Only this way can you optimize the encapsulated innards without
constantly having to update the tests. Test suites that get in the way of refactoring are often tightly coupled to
implementation details.

Code Example:

No code examples yet...

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Testing the Untestable and Other Anti-Patterns

1.6. Test semantic - logic 291

https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://dl.acm.org/doi/10.5555/3370272.3370293
https://dl.acm.org/doi/10.1145/3350768.3350775
https://link.springer.com/chapter/10.1007/978-3-540-76440-3_8
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://dl.acm.org/doi/abs/10.1145/3482909.3482916
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.5499&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/9769994/
https://dl.acm.org/doi/10.1145/3337932.3338815
https://testsmells.org/
https://dl.acm.org/doi/10.1145/3463274.3463335
https://link.springer.com/article/10.1007/s10664-021-09969-1
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://dl.acm.org/doi/10.1145/3368089.3417921
https://dzone.com/articles/testing-the-untestable-and-other-anti-patterns

Test Smells Catalog, Release 2.0

1.6.1.38 Multiple Test Conditions

Definition:

e A test is trying to apply the same test logic to many sets of input values each with their own corresponding
expected result.

Code Example:

public void testMultipleValueSets(){
// Set Up Fixture
Calculator sut = new Calculator();
TestValues[] testValues = {
new TestValues(1,2,3),
new TestValues(2,3,5),
new TestValues(3,4,8),
new TestValues(4,5,9)
e
for (int i = 0; i < testValues.length; i++){
TestValues values = testValues[i];
int actual = sut.calculate(values.a, values.b);
assertEquals(message(i), values.expectedSum, actual);
}
}

private String message(int i) {
return "Row "+ String.valueOf(i);

}

References:

Quality attributes
e - Code Example
- Cause and Effect
* - Frequency

e - Refactoring

» xUnit test patterns: Refactoring test code

1.6.1.39 Nested Conditional

Definition:

* Nested conditional expression. Use if and else leg of a conditional only if both paths are part of the normal
behavior; if one leg is an unusual condition, use a separate exit point (guard clause) instead.

Code Example:

References:

Quality attributes
* - Code Example

292 Chapter 1. Contents

https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

e - Cause and Effect
* - Frequency

* - Refactoring

* An approach to quality engineering of TTCN-3 test specifications
* Pattern-based Smell Detection in TTCN-3 Test Suites

 Utilising Code Smells to Detect Quality Problems in TTCN-3 Test Suites

1.6.1.40 Neverfail Test

Definition:

* We may just “know” that some piece of functionality is not working but the tests for that functionality are passing
nonetheless. When doing test-driven development we have added a test for functionality we have not yet written
but we cannot get it to fail.

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

» xUnit test patterns: Refactoring test code

1.6.1.41 Only Easy Tests

Definition:

 Similar to happy path tests, easy tests concentrate on things that are easy to verify, such as simple property values.
However, the real logic of the unit under test is ignored. This is a symptom of an inexperienced developer trying
to test complex code.

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* JUnit Anti-patterns

1.6. Test semantic - logic 293

https://link.springer.com/article/10.1007/s10009-008-0075-0
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.144.6997&rep=rep1&type=pdf
https://link.springer.com/chapter/10.1007/978-3-540-73066-8_16
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false
https://exubero.com/junit/anti-patterns/

Test Smells Catalog, Release 2.0

1.6.1.42 Only Happy Path Tests

Definition:

¢ Only the expected behaviour of the system is tested. Valid input data is fed into the system, and the results are
checked against the expected correct answer. What is missing in this case is the exceptional conditions.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* JUnit Anti-patterns

1.6.1.43 Paranoid

Definition:
* A test (and as a result, its subject) covers edge cases that aren’t actually reachable by the production application.

Code Example:

Subject under test
require "json"

[Note: In production, this func will only ever be called by .csv_for below]
def escape_csv_string_value(value)
if !value
elsif !value.kind_of?(String)
escape_csv_string_value(.dump (value))
elsif value.include?(",")
"\"#{value.gsub(/"/, "\"\"")\""
else
value
end
end

Test
class Paranoid <
def test_does_nothing_without_commas
text = "hi my name is \"Todd\""

result = escape_csv_string_value(text)

assert_equal text, result
end

def test_wraps_comma_strings_with_double_quotes
(continues on next page)

294 Chapter 1. Contents

https://exubero.com/junit/anti-patterns/

Test Smells Catalog, Release 2.0

(continued from previous page)

result = escape_csv_string value("Hello, world.")

assert_equal "\"Hello, world.\"", result
end

def test_double_quotes_in_comma_strings
result = escape_csv_string_value("Hello, \"Todd\".™)

assert_equal "\"Hello, \"\"Todd\"\".\"", result
end

def test_ensure_not_null
result = escape_csv_string_value(nil)

assert_equal "", result
end

def test_coerce_number_to_string
result = escape_csv_string_value(42)

assert_equal "42", result
end

def test_coerce_object_to_string_and_escape_the_string
result = escape_csv_string_value(name: "Jim", age: 64)

assert_equal "\"{\"\"name\"\":\"\"Jim\"\",\"\"age\"\":64}\"", result
end
end

Fake production implementation to add context to the subject
def csv_for(value)
if value.kind_of?(String)
escape_csv_string_value(value)
elsif value.kind_of?(Array)
if value.any? { |item| item.kind_of?(Array) }
value.map { |item| csv_for(item) }.join("\n")
else
value.map { |item| csv_for(item) }.join(",")
end
else
value
end
end

Example use:
csv_for([["id", "name", "bio"], [1l, "joe", "why, hello \"joe\"!'"]11)

nr o

=> 'id,name,bio\nl, joe, "why, hello joe

References:

Quality attributes

1.6. Test semantic - logic 295

Test Smells Catalog, Release 2.0

¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* A workbook repository of example test smells and what to do about them

1.6.1.44 Parsed Data

Definition:
* A test creates structured data by parsing unstructured input and only uses the structured data during the test.

Code Example:

void ParseAndTest(string xml) {
// parse
Employee e = Employee.Deserialize(xml);
// test logic
EmployeeCollection ¢ = new EmployeeCollection();
c.Add(e);
Assert.IsTrue(c.Contains(e));

References:

Quality attributes
* - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

e Parameterized Test Patterns For Effective Testing with Pex

1.6.1.45 Quixotic

Definition:

* A test that charts an idealistic path through the subject code, cherry-picking inputs that provide minimum re-
sistance (e.g. in test data setup), which may result in missed test coverage in code that handle negative cases.
Notably, this is more likely to occur when those negative cases are also somehow complex, which is precisely
when good testing is important!

Code Example:

Subject under test
def rank_hotel_review(user, title, text, stars)
rank = 10
rank -= 3 unless user.logged_in
(continues on next page)

296 Chapter 1. Contents

https://github.com/testdouble/test-smells
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.159.6145&rep=rep1&type=pdf

Test Smells Catalog, Release 2.0

(continued from previous page)
rank += 10 if stars == || stars == 1
if rank > 1 &% obscene?(title)
raise "Underage swearing!" unless user.age > 13

rank = 1
elsif rank > 3 && obscene?(text)
rank = 3 unless user.occupation == "sailor"
end
return rank
end
Test

class Quixotic < SmellTest
def test_5_star_member
user = OpenStruct.new(logged_in: true)

result = rank_hotel_review(user, "title", "body", 5)

assert_equal 20, result
end

def test_3_star_anonymous
user = OpenStruct.new(logged_in: false)

result = rank_hotel_review(user, "title", "body", 3)

assert_equal 7, result
end
end

Fake production implementations to simplify example test of subject
def obscene?(text)

text.include?("obscenities™)
end

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* A workbook repository of example test smells and what to do about them

1.6. Test semantic - logic 297

https://github.com/testdouble/test-smells

Test Smells Catalog, Release 2.0

1.6.1.46 Rewriting Private Methods As Public

Definition:

 This anti-pattern arises when a developer is trying to increase code coverage but is not able to test all of the

private methods in a class

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

¢ Anti-Patterns In Unit Testing

1.6.1.47 Rotten Green Test

Definition:
* A test that passes (is green) but contains assertions that are never executed

Code Example:

@Test
public void testListWindowsNewBucket() throws Exception {

BucketLeapArray leapArray = new BucketLeapArray(sampleCount,
intervalInMs);

List<WindowWrap<MetricBucket>> list = leapArray.list(Q);
for (WindowWrap<MetricBucket> wrap : list) {
assertTrue (windowWraps.contains(wrap));

3

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

e - Refactoring

* Automatic generation of smell-free unit tests

* Detection of test smells with basic language analysis methods and its evaluation

298

Chapter 1. Contents

https://completedeveloperpodcast.com/anti-patterns-in-unit-testing/
https://repositorio.ul.pt/handle/10451/56819
https://ieeexplore.ieee.org/document/10123551/

Test Smells Catalog, Release 2.0

* JTDog: a Gradle Plugin for Dynamic Test Smell Detection
* RTj: a Java framework for detecting and refactoring rotten green test cases

 Test Smell Detection Tools: A Systematic Mapping Study

1.6.1.48 Skip Rotten Green Test

Definition:
» Contains guards to stop their execution early under certain conditions.

Code Example:

@Test public void testNormalizedKeyReadWriter(){
TypeComparator <T> compl = getComparator(true);
if(!compl.supportsSerializationWithKeyNormalization()){

return ;

}

assertTrue(compl.compareToReference(comp2) == 0);

References:

Quality attributes
e - Code Example
e - Cause and Effect
* - Frequency

e - Refactoring

* RTj: a Java framework for detecting and refactoring rotten green test cases

1.6.1.49 Skip-Epidemic

Definition:
* Failing tests are constantly skipped over.

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

1.6. Test semantic - logic

299

https://ieeexplore.ieee.org/document/9678529/
https://dl.acm.org/doi/10.1145/3377812.3382151
https://dl.acm.org/doi/10.1145/3463274.3463335
https://dl.acm.org/doi/10.1145/3377812.3382151

Test Smells Catalog, Release 2.0

Categorising Test Smells

1.6.1.50 Sneaky Checking

Definition:

* The test hides its assertions in actions that are at the wrong level of details.

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

On the Maintenance of System User Interactive Tests
Smells in System User Interactive Tests

Test design for automation: Anti-patterns

1.6.1.51 Success Against All Odds

Definition:

e A test that was written to pass first rather than fail first. As an unfortunate side effect, the test case happens to

always pass even though the test should fail.

Also Known As:

The Liar

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Anti-Patterns - Digital Tapestry
Categorising Test Smells
TDD and anti-patterns - Chapter 5

Test-Driven Development: TDD Anti-Patterns

300

Chapter 1. Contents

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://orbilu.uni.lu/handle/10993/48254
https://arxiv.org/abs/2111.02317
https://www.techwell.com/techwell-insights/2015/09/test-design-automation-anti-patterns
https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-5
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/

Test Smells Catalog, Release 2.0

1.6.1.52 Tangential

Definition:

 The subject and its test claim to be focused on something, but the bulk of their complexity is focused on a different
(often subordinate) responsibility.

Code Example:

class Tangential <
def test_no_type
user = .new

set_attr(user, :name, "Fred")

assert_equal "Fred", user.name
end

def test_string_type_correct
user = .new

set_attr(user, :name, "Frida", :string)

assert_equal "Frida", user.name
end

def test_string_type_incorrect
user = .new

error = assert_raises {
set_attr(user, :age, 42, :string)
1
assert_equal "42 is not a string", error.message
end

def test_phone_type_correct
user = .new

set_attr(user, :mobile, "(614) 349-4279", :phone)

assert_equal "(614) 349-4279", user.mobile
end

def test_phone_type_incorrect
user = .new

error = assert_raises {
set_attr(user, :mobile, "1337", :phone)
3
assert_equal "1337 is not a phone", error.message
end

def test_invalid_first_phone_character_cannot_start_with_1
user = .new
(continues on next page)

1.6. Test semantic - logic 301

Test Smells Catalog, Release 2.0

(continued from previous page)

assert_raises {
set_attr(user, :mobile, "(123) 456-7890", :phone)
}

end

def test_simple_japanese_phone_number
user = OpenStruct.new

set_attr(user, :mobile, "090-1790-1357", :phone)

assert_equal "090-1790-1357", user.mobile
end

def test_japanese_without_the_trunk
user = OpenStruct.new

assert_raises {
set_attr(user, :mobile, "90-1790-1357", :phone)
3

end

def test_international_japanese_phone_number
user = OpenStruct.new

set_attr(user, :mobile, "011-81-90-1790-1357", :phone)
assert_equal "011-81-90-1790-1357", user.mobile

end
end

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* A workbook repository of example test smells and what to do about them

302 Chapter 1. Contents

https://github.com/testdouble/test-smells

Test Smells Catalog, Release 2.0

1.6.1.53 Test By Number

Definition:

 Production code is tested consistently by rote, inadvertently suppressing creativity in the design of both the tests
and their subjects.

Code Example:

Test
class TestByNumber <
def setup
@repo = .new
@subject = .new(@repo)
super
end

def test_create
user = @repo.save(.new(name: 'Jane', addresses: []))
address_params = .nhew(street: 'some street')

@subject.create(user, address_params)

address = @repo.find(address_params.id)

assert_equal "some street", address.street

assert_equal address, user.addresses[0]
end

def test_read
address = @repo.save(.new(street: 'a street'))
user = @repo.save(.new(name: 'Joe', addresses: [address]))

result = @subject.read(user, address.id)

assert_equal address, result
end

def test_update
address = @repo.save(.new(street: 'no street', zip: '12345'))
user = @repo.save(.new(name: 'Jill', addresses: [address]))

@subject.update(user, {
id: address.id,
street: 'the street'

i)

address = @repo.find(address.id)
assert_equal "the street", address.street
assert_equal "12345", address.zip

end

def test_destroy
address = @repo.save(.new(street: 'foo street'))
user = @repo.save(.new(name: 'Gene', addresses: [address]))

(continues on next page)

1.6. Test semantic - logic 303

Test Smells Catalog, Release 2.0

(continued from previous page)

@Gsubject.destroy(user, address.id)

assert_equal nil, @repo.find(address.id)
assert_equal 0, user.addresses.length
end

Fake production implementations to simplify example test of subject
class Repo
def initialize
@items = {}
OGnext_id = 1
end

def save(item)
item.id = item.id || @next_id += 1
@items[item.id] = item
return item

end

def find(item_id)
@items[item_id]
end

def destroy(item_id)
@items.delete(item_id)
end
end
end

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

¢ - Refactoring

* A workbook repository of example test smells and what to do about them

304 Chapter 1. Contents

https://github.com/testdouble/test-smells

Test Smells Catalog, Release 2.0

1.6.1.54 Test-Per-Method

Definition:

 Although a one-to-one relationship between test and production classes is a reasonable starting point, a one-to-
one relationship between test and production method is almost always a bad idea

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* Unit Testing Anti-Patterns, Full List

1.6.1.55 Testing Internal Implementation

Definition:
» Related to tests that are tightly coupled to internal implementation

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

» Software Testing Anti-patterns

1.6.1.56 Testing The Authentication Framework

Definition:

* When the test literally compares the generated message digest with a string constant to see if both are identical
and they are provided by a 3rd party library, whose maintainers are responsible to properly test the code and not
the developer.

References:

Quality attributes
* - Code Example
* - Cause and Effect

* - Frequency

1.6. Test semantic - logic 305

https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
http://blog.codepipes.com/testing/software-testing-antipatterns.html

Test Smells Catalog, Release 2.0

e - Refactoring

¢ Did You Remember To Test Your Tokens?

1.6.1.57 Tests That Can’T Fail

Definition:
» TDD tests that pass rather than failing in the first execution.

References:

Quality attributes
e - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* A testing anti-pattern safari

1.6.1.58 The Dodger

Definition:

* A unit test which has lots of tests for minor (and presumably easy to test) side effects, but never tests the core
desired behavior. Sometimes you may find this in database access related tests, where a method is called, then
the test selects from the database and runs assertions against the result.

Also Known As:
* Easy Tests

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

 Anti-Patterns - Digital Tapestry
e Test-Driven Development: TDD Anti-Patterns

¢ Unit Testing Anti-Patterns, Full List

306 Chapter 1. Contents

https://dl.acm.org/doi/10.1145/3379597.3387471
https://www.youtube.com/watch?v=VBgySRk0VKY
https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html

Test Smells Catalog, Release 2.0

1.6.1.59 The Inspector

Definition:

* A unit test that violates encapsulation in an effort to achieve 100% code coverage, but knows so much about what
is going on in the object that any attempt to refactor will break the existing test and require any change to be
reflected in the unit test.

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Anti-Patterns - Digital Tapestry

» Categorising Test Smells

¢ Test-Driven Development: TDD Anti-Patterns
* Unit Testing Anti-Patterns, Full List

* Unit testing Anti-patterns catalogue

1.6.1.60 The Liar

Definition:

* Testing asynchronous code becomes tricky as it is based on a future value that you might receive or might not.
Also Known As:

» Evergreen Tests, Success Against All Odds
Code Example:

test('the data is peanut butter', (O => {
function callback(data) {
expect(data) .toBe('peanut butter');
}

fetchData(callback);
DK

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

1.6. Test semantic - logic 307

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue

Test Smells Catalog, Release 2.0

* Anti-Patterns - Digital Tapestry

* Categorising Test Smells

» Smells in software test code: A survey of knowledge in industry and academia
e TDD anti patterns - Chapter 1

» TDD anti-patterns - the liar, excessive setup, the giant, slow poke

* Test-Driven Development: TDD Anti-Patterns

* Unit Testing Anti-Patterns, Full List

1.6.1.61 The Sequencer

Definition:
* A unit test that depends on items in an unordered list appearing in the same order during assertions.

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Anti-Patterns - Digital Tapestry
» Categorising Test Smells
¢ Test-Driven Development: TDD Anti-Patterns

¢ Unit Testing Anti-Patterns, Full List

1.6.1.62 Underspecification

Definition:
» While it’s clearly possible for a test suite to do too much, it’s far more common for it to do too little.

Code Example:

MIN_FREE_SHIPPING_PRICE = 25.0

def free_shipping?(total_order_price)
total_order_price > MIN_FREE_SHIPPING_PRICE
end

def test_free_shipping_returns_true_for_order_above_min_price
assert free_shipping? (MIN_FREE_SHIPPING_PRICE + 1)
end

(continues on next page)

308 Chapter 1. Contents

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060
https://www.codurance.com/publications/tdd-anti-patterns-chapter-1
https://marabesi.com/tdd/2021/08/28/tdd-anti-patterns.html
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html

Test Smells Catalog, Release 2.0

(continued from previous page)
def test_free_shipping_returns_false_for_order_below_min_price
assert !free_shipping?(- D
end

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

* Testing anti-patterns: How to fail with 100% test coverage

1.6.1.63 Untestable Test Code

Definition:

* The body of a Test Method is obscure enough or contains enough Conditional Test Logic to cause us to wonder
whether the test is correct.

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

 xUnit test patterns: Refactoring test code

1.6.1.64 Use Smart Values

Definition:
* Tests pass when the scenario they test is not really fulfilled

Code Example:

public class PriceCalculatorFactoryTest {

SettingsService settings = mock(SettingsService.class);

@Test

public void shouldCreatePriceCalculator() {
//given
given(settings.getMinMargin()) .willReturn(new BigDecimal (20));
given(settings.getMaxMargin()) .willReturn(new BigDecimal (50));
given(settings.getPremiumShare()) .willReturn(new BigDecimal (50));

(continues on next page)

1.6. Test semantic - logic 309

https://jasonrudolph.com/blog/testing-anti-patterns-how-to-fail-with-100-test-coverage/
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

//when

PriceCalculator calculator

= new PriceCalculatorFactory(settings).create();
Chapter 3. Strength

7

//then

assertThat(calculator)

.isEqualTo(new PriceCalculator(new BigDecimal(20),
new BigDecimal (50), new BigDecimal(50)));

(continued from previous page)

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Bad tests, good tests

1.6.1.65 Wheel Of Fortune

Definition:
* where random values in the test can lead to error — see also It Passed Yesterday

References:

Quality attributes
* - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

Test Smells - The Coding Craftsman

310

Chapter 1. Contents

http://kaczanowscy.pl/books/bad_tests_good_tests.html
https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

1.6.1.66 X-Ray Specs

Definition:
* A test that accesses or edits private, internal state of the subject that it shouldn’t logically be privy to.

Code Example:

Subject under test
class MutableSeatMap
attr_reader :approvals, :current_seat

def initialize(ticket, original_seat)
@fare_class = ticket.fare_class
@current_seat = original_seat
@approvals = {}

end

def move_to(new_seat)
if !@approvals[@fare_class] || !@approvals[@fare_class][new_seat]
qualify_fare_class_for_seat!(new_seat)
end

if @approvals[@fare_class][new_seat]
@current_seat = new_seat
end
end
end

Test
class XRaySpecs < SmellTest
def setup
@ticket = OpenStruct.new(fare_class: "M")
@subject = MutableSeatMap.new(@ticket, "18D")
super
end

def test_approve_if_behind_row_ten
@subject.move_to("11B")

assert_equal true, @subject.approvals["M"]["11B"]
assert_equal "11B", @subject.current_seat, "11B"
end

def test_deny_if ahead_of_row_ten
@subject.move_to("9]")

assert_equal false, @subject.approvals["M"]["9]"]
assert_equal "18D", @subject.current_seat

end

def test_will_short_circuit_approval_process_when_memoized
@subject.approvals['"M"] = {"Havanna" => "Sure, why not"}

(continues on next page)

1.6. Test semantic - logic 311

Test Smells Catalog, Release 2.0

(continued from previous page)

@subject.move_to("Havanna")

assert_equal "Sure, why not", @subject.approvals["M"]["Havanna"]
assert_equal "Havanna", @subject.current_seat
end
end

Fake production implementations to simplify example test of subject
class MutableSeatMap
def qualify_fare_class_for_seat!(seat)
allowed = seat.match(/A(\d+)/)[0].to_i > 10

@approvals[@fare_class] ||= {}
@approvals[@fare_class][seat] = allowed
end
end
References:
Quality attributes

e - Code Example
¢ - Cause and Effect
e - Frequency

* - Refactoring

* A workbook repository of example test smells and what to do about them

» Smells in software test code: A survey of knowledge in industry and academia

1.6.1.67 You Do Weird Things To Get At The Code Under Test

Definition:
* The use of reflection schemes to invoke and test private methods.

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

¢ - Refactoring

¢ Unit Testing Smells: What Are Your Tests Telling You?

312 Chapter 1. Contents

https://github.com/testdouble/test-smells
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060
https://dzone.com/articles/unit-testing-smells-what-are-your-tests-telling-yo

Test Smells Catalog, Release 2.0

1.6.2 Testing many things
1.6.2.1 Assert The World

Definition:

» where the assertions prove everything, even uninteresting stuff.

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

¢ Test Smells - The Coding Craftsman

1.6.2.2 Assertion Roulette

Definition:

e Occurs when a test method has multiple non-documented assertions. Multiple assertion statements in a test
method without a descriptive message impacts readability/understandability/maintainability as it’s not possible

to understand the reason for the failure of the test.

import unittest
airLinesCode = ['2569','2450"','2340"']

class Flight:
def __init__(self,airLine,mileage):
self.mileage = mileage
self.airLine = airLine
self.fullFuel = True

def isValidAirLineCode(self):
for airLineCode in airLinesCode:
if(self.airLine == airLineCode):
return True
return False

class TestFlight(unittest.TestCase):
def test_flight(self):
flight = Flight('2569',1000)

self.assertEqual (flight.mileage, 1000)
self.assertTrue(flight.fullFuel)
self.assertTrue(flight.isValidAirLineCode())

(continues on next page)

1.6. Test semantic - logic

313

https://codingcraftsman.wordpress.com/2018/09/27/test-smells/

Test Smells Catalog, Release 2.0

(continued from previous page)
if __name__ == '__main__"':
unittest.main(argv=['first-arg-is-ignored'], exit=False)

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* A preliminary evaluation on the relationship among architectural and test smells

* A survey on test practitioners’ awareness of test smells

* An Empirical Study into the Relationship Between Class Features and Test Smells

* An Exploratory Study on the Refactoring of Unit Test Files in Android Applications

* An empirical analysis of the distribution of unit test smells and their impact on software maintenance
* An empirical investigation into the nature of test smells

* An exploratory study of the relationship between software test smells and fault-proneness
* Analyzing Test Smells Refactoring from a Developers Perspective

* Are test smells really harmful? An empirical study

* As Code Testing: Characterizing Test Quality in Open Source Ansible Development

* Assessing diffusion and perception of test smells in scala projects

* Automatic Identification of High-Impact Bug Report by Product and Test Code Quality

* Automatic generation of smell-free unit tests

 Categorising Test Smells

* Characterizing High-Quality Test Methods: A First Empirical Study

* Detection of test smells with basic language analysis methods and its evaluation

» Developers perception on the severity of test smells: an empirical study

* Did You Remember To Test Your Tokens?

* Do the Test Smells Assertion Roulette and Eager Test Impact Students’ Troubleshooting and Debugging Capa-
bilities?

* Enhancing developers’ awareness on test suites’ quality with test smell summaries

* Generated Tests in the Context of Maintenance Tasks: A Series of Empirical Studies
e Handling Test Smells in Python: Results from a Mixed-Method Study

* How are test smells treated in the wild? A tale of two empirical studies

* Improving Student Testing Practices through a Lightweight Checklist Intervention.

¢ Inspecting Automated Test Code: A Preliminary Study

314 Chapter 1. Contents

https://ieeexplore.ieee.org/document/10006864/
https://arxiv.org/abs/2003.05613
https://ieeexplore.ieee.org/document/7890581
https://dl.acm.org/doi/10.1145/3387940.3392189
https://ieeexplore.ieee.org/document/6405253
https://dl.acm.org/doi/10.1145/2970276.2970340
https://ieeexplore.ieee.org/abstract/document/8847402/
https://dl.acm.org/doi/10.1145/3571473.3571487
https://link.springer.com/article/10.1007/s10664-014-9313-0
https://ieeexplore.ieee.org/abstract/document/9787876
https://dl.acm.org/doi/10.1109/MSR.2019.00072
https://huang.zj.cn/pdf/J13.pdf
https://repositorio.ul.pt/handle/10451/56819
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/9796158/
https://ieeexplore.ieee.org/document/10123551/
https://arxiv.org/abs/2107.13902
https://dl.acm.org/doi/10.1145/3379597.3387471
https://arxiv.org/abs/2303.04234
https://arxiv.org/abs/2303.04234
https://lutpub.lut.fi/handle/10024/158751
https://ieeexplore.ieee.org/document/9954000/
https://dl.acm.org/doi/10.1145/3474624.3477066
https://sol.sbc.org.br/journals/index.php/jserd/article/download/1802/1807/7485
https://repository.lib.ncsu.edu/bitstream/handle/1840.20/39743/etd.pdf?sequence=1
https://dl.acm.org/doi/abs/10.5555/1768961.1768982

Test Smells Catalog, Release 2.0

Investigating Severity Thresholds for Test Smells

Investigating Test Smells in JavaScript Test Code

Is Assertion Roulette still a test smell? An experiment from the perspective of testing education
On the Distribution of “Simple Stupid Bugs” in Unit Test Files: An Exploratory Study

On the Relation of Test Smells to Software Code Quality

On the diffusion of test smells and their relationship with test code quality of Java projects

On the diffusion of test smells in automatically generated test code: an empirical study

On the distribution of test smells in open source Android applications: an exploratory study

On the influence of Test Smells on Test Coverage

On the interplay between software testing and evolution and its effect on program comprehension
On the test smells detection: an empirical study on the jnose test accuracy

On the use of test smells for prediction of flaky tests

Pizza versus Pinsa: On the Perception and Measurability of Unit Test Code Quality

Practitioner Perceptions of Ansible Test Smells

PyNose: A Test Smell Detector For Python

Pytest-Smell: a smell detection tool for Python unit tests

Quality defects detection in unit tests

RAIDE: a tool for Assertion Roulette and Duplicate Assert identification and refactoring
Refactoring Test Code

Refactoring Test Smells With JUnit 5: Why Should Developers Keep Up-to-Date?

Refactoring Test Smells: A Perspective from Open-Source Developers

Revisiting Test Smells in Automatically Generated Tests: Limitations, Pitfalls, and Opportunities
Scented since the beginning: On the diffuseness of test smells in automatically generated test code
Smart prediction for refactorings in the software test code

SoCRATES: Scala radar for test smells

Software Unit Test Smells

Test Artifacts — The Practical Testing Book

Test Smell Detection Tools: A Systematic Mapping Study

Test-related factors and post-release defects: an empirical study

TestAXE: Automatically Refactoring Test Smells Using JUnit 5 Features

TestQ: Exploring Structural and Maintenance Characteristics of Unit Test Suites

The Relation of Test-Related Factors to Software Quality: A Case Study on Apache Systems
The secret life of test smells-an empirical study on test smell evolution and maintenance

To What Extent Can Code Quality be Improved by Eliminating Test Smells?

Toward static test flakiness prediction: a feasibility study

Towards Automated Tools for Detecting Test Smells: An Empirical Investigation into the Nature of Test Smells

1.6.

Test semantic - logic

https://dl.acm.org/doi/abs/10.1145/3379597.3387453
https://dl.acm.org/doi/10.1145/3482909.3482915
https://ieeexplore.ieee.org/document/9833107/
https://ieeexplore.ieee.org/document/9463091
https://ieeexplore.ieee.org/document/8529832
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://dl.acm.org/doi/10.1145/2897010.2897016
https://dl.acm.org/doi/10.5555/3370272.3370293
https://dl.acm.org/doi/10.1145/3350768.3350775
https://link.springer.com/chapter/10.1007/978-3-540-76440-3_8
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://dl.acm.org/doi/abs/10.1145/3482909.3482916
https://ieeexplore.ieee.org/document/9240623/
https://ieeexplore.ieee.org/document/10092644/
https://ieeexplore.ieee.org/document/9678615/
https://dl.acm.org/doi/10.1145/3533767.3543290
https://jrnl.nau.edu.ua/index.php/IPZ/article/download/3084/3036/0
https://dl.acm.org/doi/10.1145/3422392.3422510
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.5499&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/9769994/
https://dl.acm.org/doi/10.1145/3425174.3425212
https://ieeexplore.ieee.org/document/9240691
https://www.sciencedirect.com/science/article/pii/S0164121219301487?casa_token=UT0EMFzxTcQAAAAA:L9J82_15tdySkabcIMSHKPx8rVkrltOzcwgme5cIBWgT0txJENY5y-BdUmCYUoGHnoEjZJH-cYc
https://dl.acm.org/doi/10.1145/3474624.3477070
https://dl.acm.org/doi/10.1145/3337932.3338815
https://testsmells.org/
https://damorimrg.github.io/practical_testing_book/goodpractices/artifacts.html
https://dl.acm.org/doi/10.1145/3463274.3463335
https://dl.acm.org/doi/10.1145/3338906.3342500
https://sol.sbc.org.br/index.php/cbsoft_estendido/article/view/22311
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.6409&rep=rep1&type=pdf
https://search.proquest.com/openview/c52d821a4dd6ecb046957d9d6a532ae0/1?pq-origsite=gscholar&cbl=326341
https://link.springer.com/article/10.1007/s10664-021-09969-1
https://ieeexplore.ieee.org/document/9763153/
https://dl.acm.org/doi/10.1145/3472674.3473981
https://dibt.unimol.it/staff/fpalomba/documents/C14.pdf

Test Smells Catalog, Release 2.0

 Understanding Testability and Test Smells

* Understanding practitioners’ strategies to handle test smells: a multi-method study
* Unit Test Smells and Accuracy of Software Engineering Student Test Suites

* What We Know About Smells in Software Test Code

e What the Smell? An Empirical Investigation on the Distribution and Severity of Test Smells in Open Source
Android Applications

* Why do builds fail?—A conceptual replication study
* tsDetect: an open source test smells detection tool

» xUnit test patterns: Refactoring test code

1.6.2.3 Eager Test

Definition:

¢ A test case that checks or uses more than one method of the class under test. Since its introduction, this smell
has been somewhat broadly defined. It is left to interpretation which method calls count towards the maximum.
Either all methods invoked on the class under test could count, or only the methods invoked on the same instance
under test, or only the methods of which the return value is eventually used within an assertion.

Also Known As:

e The Test It All, Split Personality, Many Assertions, Multiple Assertions, The Free Ride, The One, Piggyback,
Silver Bullet

Code Example:

public void testFlightMileage_asKm2() throws Exception {

// setup fixture
// exercise contructor
Flight newFlight = new Flight(validFlightNumber) ;
// verify constructed object
assertEquals(validFlightNumber, newFlight.number);
assertEquals("", newFlight.airlineCode);
assertNull (newFlight.airline);
// setup mileage
newFlight.setMileage(1122);
// exercise mileage translater
int actualKilometres = newFlight.getlMileageAskm(Q);
// verify results
int expectedKilometres = 1810;
assertEquals(expectedKilometres, actualKilometres);
// now try it with a canceled flight:
newFlight.cancel(Q);
try {

newFlight.getMileageAsKm(Q);

fail ("Expected exception");
} catch (InvalidRequestException e) {

assertEquals("Cannot get cancelled flight mileage", e.getMessage());
}

316 Chapter 1. Contents

https://www.designite-tools.com/blog/understanding-testability-test-smells
https://dl.acm.org/doi/10.1145/3474624.3474639
https://dl.acm.org/doi/abs/10.1145/3430665.3456328?casa_token=igLWdXV-fTYAAAAA:UZiEPkDc2-NRE6_Zi0Q9FRDeUjeyZcdVTLO9Kzk53cVuo7LC-nC7m690pw6vZpQmMfa5ktOcw2pvFw
https://ieeexplore.ieee.org/document/8501942
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.sciencedirect.com/science/article/pii/S0164121221000364
https://dl.acm.org/doi/10.1145/3368089.3417921
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

References:

Quality attributes

¢ - Code Example
e - Cause and Effect
* - Frequency

e - Refactoring

* A preliminary evaluation on the relationship among architectural and test smells
* A survey on test practitioners’ awareness of test smells

* An Empirical Study into the Relationship Between Class Features and Test Smells

An Exploratory Study on the Refactoring of Unit Test Files in Android Applications

An analysis of information needs to detect test smells
* An empirical analysis of the distribution of unit test smells and their impact on software maintenance

* An empirical investigation into the nature of test smells

An exploratory study of the relationship between software test smells and fault-proneness

Analyzing Test Smells Refactoring from a Developers Perspective

Are test smells really harmful? An empirical study

Assessing diffusion and perception of test smells in scala projects

Automatic Identification of High-Impact Bug Report by Product and Test Code Quality

Automatic Refactoring Method to Remove Eager Test Smell

Automatic Test Smell Detection Using Information Retrieval Techniques

Automatic generation of smell-free unit tests

Categorising Test Smells

Characterizing the Relative Significance of a Test Smell

Detecting redundant unit tests for Aspect] programs

Developers perception on the severity of test smells: an empirical study

Do the Test Smells Assertion Roulette and Eager Test Impact Students’ Troubleshooting and Debugging Capa-
bilities?

Enhancing developers’ awareness on test suites’ quality with test smell summaries

Generated Tests in the Context of Maintenance Tasks: A Series of Empirical Studies

Handling Test Smells in Python: Results from a Mixed-Method Study

How are test smells treated in the wild? A tale of two empirical studies

Investigating Severity Thresholds for Test Smells

Investigating Test Smells in JavaScript Test Code

Just-In-Time Test Smell Detection and Refactoring: The DARTS Project

Machine Learning-Based Test Smell Detection

1.6.

Test semantic - logic 317

https://ieeexplore.ieee.org/document/10006864/
https://arxiv.org/abs/2003.05613
https://ieeexplore.ieee.org/document/7890581
https://dl.acm.org/doi/10.1145/3387940.3392189
https://www2.swc.rwth-aachen.de/docs/teaching/seminar2016/FsSE%20CTRelEng%202016.pdf#page=23
https://ieeexplore.ieee.org/document/6405253
https://dl.acm.org/doi/10.1145/2970276.2970340
https://ieeexplore.ieee.org/abstract/document/8847402/
https://dl.acm.org/doi/10.1145/3571473.3571487
https://link.springer.com/article/10.1007/s10664-014-9313-0
https://dl.acm.org/doi/10.1109/MSR.2019.00072
https://huang.zj.cn/pdf/J13.pdf
https://dl.acm.org/doi/10.1145/3571473.3571478
https://ieeexplore.ieee.org/abstract/document/8530039
https://repositorio.ul.pt/handle/10451/56819
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/4021366
https://ieeexplore.ieee.org/abstract/document/4021983
https://arxiv.org/abs/2107.13902
https://arxiv.org/abs/2303.04234
https://arxiv.org/abs/2303.04234
https://lutpub.lut.fi/handle/10024/158751
https://ieeexplore.ieee.org/document/9954000/
https://dl.acm.org/doi/10.1145/3474624.3477066
https://sol.sbc.org.br/journals/index.php/jserd/article/download/1802/1807/7485
https://dl.acm.org/doi/abs/10.1145/3379597.3387453
https://dl.acm.org/doi/10.1145/3482909.3482915
https://fpalomba.github.io/pdf/Conferencs/C51.pdf
https://arxiv.org/abs/2208.07574

Test Smells Catalog, Release 2.0

* Obscure Test

* On The Detection of Test Smells: A Metrics-Based Approach for General Fixture and Eager Test
* On the Relation of Test Smells to Software Code Quality

* On the diffusion of test smells and their relationship with test code quality of Java projects

* On the diffusion of test smells in automatically generated test code: an empirical study

* On the distribution of test smells in open source Android applications: an exploratory study

* On the influence of Test Smells on Test Coverage

* On the interplay between software testing and evolution and its effect on program comprehension
* On the test smells detection: an empirical study on the jnose test accuracy

* On the use of test smells for prediction of flaky tests

* Pizza versus Pinsa: On the Perception and Measurability of Unit Test Code Quality

* Pytest-Smell: a smell detection tool for Python unit tests

» Refactoring Test Code

* Revisiting Test Smells in Automatically Generated Tests: Limitations, Pitfalls, and Opportunities
* Rule-based Assessment of Test Quality

» Scented since the beginning: On the diffuseness of test smells in automatically generated test code
* Smart prediction for refactorings in the software test code

* Smells in software test code: A survey of knowledge in industry and academia

* SoCRATES: Scala radar for test smells

* Software Unit Test Smells

 Test Smell Detection Tools: A Systematic Mapping Study

* Test code quality and its relation to issue handling performance

* Test-related factors and post-release defects: an empirical study

* TestQ: Exploring Structural and Maintenance Characteristics of Unit Test Suites

* The Relation of Test-Related Factors to Software Quality: A Case Study on Apache Systems

* The secret life of test smells-an empirical study on test smell evolution and maintenance

* To What Extent Can Code Quality be Improved by Eliminating Test Smells?

» Toward static test flakiness prediction: a feasibility study

» Towards Automated Tools for Detecting Test Smells: An Empirical Investigation into the Nature of Test Smells
» Understanding Testability and Test Smells

¢ Unit Test Smells and Accuracy of Software Engineering Student Test Suites

* What We Know About Smells in Software Test Code

e What the Smell? An Empirical Investigation on the Distribution and Severity of Test Smells in Open Source
Android Applications

¢ tsDetect: an open source test smells detection tool

 xUnit test patterns: Refactoring test code

318 Chapter 1. Contents

http://xunitpatterns.com/Obscure%20Test.html
https://ieeexplore.ieee.org/abstract/document/4359471
https://ieeexplore.ieee.org/document/8529832
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2532
https://dl.acm.org/doi/10.1145/2897010.2897016
https://dl.acm.org/doi/10.5555/3370272.3370293
https://dl.acm.org/doi/10.1145/3350768.3350775
https://link.springer.com/chapter/10.1007/978-3-540-76440-3_8
https://sol.sbc.org.br/journals/index.php/jserd/article/view/1893
https://dl.acm.org/doi/abs/10.1145/3482909.3482916
https://ieeexplore.ieee.org/document/9240623/
https://dl.acm.org/doi/10.1145/3533767.3543290
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.5499&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/9240691
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.108.3631&rep=rep1&type=pdf
https://www.sciencedirect.com/science/article/pii/S0164121219301487?casa_token=UT0EMFzxTcQAAAAA:L9J82_15tdySkabcIMSHKPx8rVkrltOzcwgme5cIBWgT0txJENY5y-BdUmCYUoGHnoEjZJH-cYc
https://dl.acm.org/doi/10.1145/3474624.3477070
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060
https://dl.acm.org/doi/10.1145/3337932.3338815
https://testsmells.org/
https://dl.acm.org/doi/10.1145/3463274.3463335
https://ieeexplore.ieee.org/abstract/document/6862882/
https://dl.acm.org/doi/10.1145/3338906.3342500
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.6409&rep=rep1&type=pdf
https://search.proquest.com/openview/c52d821a4dd6ecb046957d9d6a532ae0/1?pq-origsite=gscholar&cbl=326341
https://link.springer.com/article/10.1007/s10664-021-09969-1
https://ieeexplore.ieee.org/document/9763153/
https://dl.acm.org/doi/10.1145/3472674.3473981
https://dibt.unimol.it/staff/fpalomba/documents/C14.pdf
https://www.designite-tools.com/blog/understanding-testability-test-smells
https://dl.acm.org/doi/abs/10.1145/3430665.3456328?casa_token=igLWdXV-fTYAAAAA:UZiEPkDc2-NRE6_Zi0Q9FRDeUjeyZcdVTLO9Kzk53cVuo7LC-nC7m690pw6vZpQmMfa5ktOcw2pvFw
https://ieeexplore.ieee.org/document/8501942
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://www.proquest.com/openview/17433ac63caf619abb410e441e6557f0/1?pq-origsite=gscholar&cbl=18750
https://dl.acm.org/doi/10.1145/3368089.3417921
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

1.6.2.4 Field-Level Assertion

Definition:
¢ This occurs when the individual fields written to the database or in output arrays have their own assertions.

References:

Quality attributes
¢ - Code Example
e - Cause and Effect
* - Frequency

¢ - Refactoring

» Design Patterns for Database API Testing 1: Web Service Saving 2 — Code

1.6.2.5 Many Assertions

Definition:

* When a test tests way too much its failure is often hard to track down.
Also Known As:

* Eager Test

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

Smells of Testing (signs your tests are bad)

1.6.2.6 Method-Based Testing

Definition:

* This occurs when the test suite is based on testing all the methods in a package, rather than units of behaviour,
such as a procedure serving a web service.

References:

Quality attributes
e - Code Example
e - Cause and Effect

1.6. Test semantic - logic 319

http://aprogrammerwrites.eu/?p=1616
https://jakescruggs.blogspot.com/2009/04/smells-of-testing-signs-your-tests-are.html

Test Smells Catalog, Release 2.0

* - Frequency

* - Refactoring

* Design Patterns for Database API Testing 1: Web Service Saving 2 — Code

1.6.2.7 Missing Assertion Message

Definition:

* A test fails. Upon examining the output of the Test Runner, we cannot determine exactly which assertion had
failed.

Code Example:

public void testInvoice_addLineItem7() {
Lineltem expItem = new LineItem(inv, product, QUANTITY);
// Exercise
inv.addItemQuantity(product, QUANTITY);
// Verify
List lineItems = inv.getLineItems();
LineItem actual = (LineItem)lineItems.get(0);
assertEquals(expItem.getInv(), actual.getInv());
assertEquals(expItem.getProd(), actual.getProd());
assertEquals(expItem.getQuantity(), actual.getQuantity());

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

» Categorising Test Smells

» xUnit test patterns: Refactoring test code

1.6.2.8 Multiple Assertions

Definition:

* When a test method contains multiple assertion statements, it is an indication that the method is testing too much
Also Known As:

» Eager Test
Code Example:

320 Chapter 1. Contents

http://aprogrammerwrites.eu/?p=1616
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://books.google.com.br/books?hl=pt-BR&lr=&id=-izOiCEIABQC&oi=fnd&pg=PT19&dq=%22test+code%22+AND+(%22test*+smell*%22+OR+antipattern*+OR+%22poor+quality%22)&ots=YL71coYZkx&sig=s3U1TNqypvSAzSilSbex5lnHonk#v=onepage&q=%22test%20code%22%20AND%20(%22test*%20smell*%22%20OR%20antipattern*%20OR%20%22poor%20quality%22)&f=false

Test Smells Catalog, Release 2.0

public class MyTestCase extends TestCase {
public void testSomething() {
// Set up for the test, manipulating local variables
assertTrue(conditionl);
assertTrue(condition2);
assertTrue(condition3);

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

e - Refactoring

* JUnit Anti-patterns

1.6.2.9 Piggybacking On Existing Tests

Definition:

* On the other extreme from multiple tests is piggybacking or adding assertions to existing tests to test a distinct
or new feature. The more of these you add the less descriptive your test becomes.

References:

Quality attributes
¢ - Code Example
¢ - Cause and Effect
* - Frequency

- Refactoring

* Anti-Patterns In Unit Testing

1.6.2.10 Split Logic

Definition:
* When the test logic is split into several test objects and their specific assertions

Code Example:

public class AddToCartTests {
@Test
public void testAddToCart() {

(continues on next page)

1.6. Test semantic - logic 321

https://exubero.com/junit/anti-patterns/
https://completedeveloperpodcast.com/anti-patterns-in-unit-testing/

Test Smells Catalog, Release 2.0

(continued from previous page)

// Test adding product to cart
1

@Test

public void testCartIsEmptyAfterCheckout() {
// Checkout process
// Assert that cart is empty

}

public class CheckoutTests {
@Test
public void testCheckout() {
// Checkout process
}

References:

Quality attributes
¢ - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* Developer test anti-patterns by lasse koskela

1.6.2.11 Split Personality

Definition:

* A test method that attempts to test several behaviors of the tested object.
Also Known As:

* Eager Test
Code Example:

@Test

public void testCalculatePrice() {
// Test scenario 1: Calculate price for customer with loyalty discount
Customer customer = new Customer();
customer.setlLoyaltyPoints(100);
double price = Product.calculatePrice(customer, 20.0, 10.0);
assertEquals(18.0, price, 0.0);

// Test scenario 2: Calculate price for customer without loyalty discount
Customer customer2 = new Customer();
customer2.setLoyaltyPoints(0);
(continues on next page)

322 Chapter 1. Contents

https://www.youtube.com/watch?v=3Fa69eQ6XgM

Test Smells Catalog, Release 2.0

(continued from previous page)

double price2 = Product.calculatePrice(customer2, 20.0, 10.0);
assertEquals(20.0, price2, 0.0);

// Test scenario 3: Calculate price for product with no discount
Customer customer3 = new Customer();
customer3.setlLoyaltyPoints(50);

double price3 = Product.calculatePrice(customer3, 30.0, 0.0);
assertEquals(30.0, price3, 0.0);

References:

Quality attributes
e - Code Example
¢ - Cause and Effect
* - Frequency

e - Refactoring

* Developer test anti-patterns by lasse koskela

1.6.2.12 Test Cases Are Concerned With More Than One Unit Of Code

Definition:
* When tests get too big they can have bugs of their own

References:

Quality attributes
* - Code Example
* - Cause and Effect
- Frequency

* - Refactoring

* Anti-Patterns In Unit Testing

1.6.2.13 The Free Ride

Definition:

e When an extra assertion is added in an existing test to cover a new scenario case
Also Known As:

* Eager Test
Code Example:

1.6. Test semantic - logic 323

https://www.youtube.com/watch?v=3Fa69eQ6XgM
https://completedeveloperpodcast.com/anti-patterns-in-unit-testing/

Test Smells Catalog, Release 2.0

public void CalculateDiscount_ExpectedDiscountForFirstTimePurchase()
{
//Arrange
decimal expected = 0.1M;
decimal expectedResultAge = 0.2M;

var sut = new DiscountCalculator();

//Act
var result = sut.CalculateDiscount(true, 30);
var resultAge = sut.CalculateDiscount(false, 65);

//Assert
Assert.Equal (expected, result);
Assert.Equal (expectedResultAge, resultAge);

References:

Quality attributes
* - Code Example
¢ - Cause and Effect
* - Frequency

* - Refactoring

* Anti-Patterns - Digital Tapestry

* Smells in software test code: A survey of knowledge in industry and academia
e TDD Anti-patterns: The Free Ride / Piggyback

e TDD and anti-patterns - Chapter 5

e Tdd antipatterns: The free ride

e Test-Driven Development: TDD Anti-Patterns

e Unit Testing Anti-Patterns, Full List

» Unit testing Anti-patterns catalogue

1.6.2.14 The Giant

Definition:
* Many assertions in a single test case

Code Example:

test('should setup middleware', async () => {
const nuxt = createNuxt()
const server = new Server(nuxt)
server.useMiddleware = jest.fn()
server.serverContext = { id: 'test-server-context' }

(continues on next page)

324

Chapter 1. Contents

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060
https://matheus.ro/2018/04/30/tdd-antipatterns-the-free-ride-piggyback/
https://www.codurance.com/publications/tdd-and-anti-patterns-chapter-5
https://semaphoreci.com/blog/2014/06/24/tdd-antipatterns-the-free-ride.html
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue

Test Smells Catalog, Release 2.0

(continued from previous page)

await server.setupMiddleware()

expect(server.nuxt.callHook) .toBeCalledTimes(2)

expect(server.nuxt.callHook) .nthCalledWith(l, 'render:setupMiddleware', server.app)
expect(server.nuxt.callHook) .nthCalledWith(2, 'render:errorMiddleware', server.app)

expect(server.useMiddleware) .toBeCalledTimes (4)
expect(serveStatic).toBeCalledTimes(2)
expect(serveStatic) .nthCalledWith(l, 'resolve(/var/nuxt/src, var/nuxt/static)’',.

—.server.options.render.static)

expect(server.useMiddleware) .nthCalledWith(l, {
dir: 'resolve(/var/nuxt/src, var/nuxt/static)’',
id: 'test-serve-static',
prefix: 'test-render-static-prefix'
b
expect(serveStatic) .nthCalledWith(2, 'resolve(/var/nuxt/build, dist, client)',.

—,server.options.render.dist)

i)

expect(server.useMiddleware) .nthCalledWith(2, {
handler: {
dir: 'resolve(/var/nuxt/build, dist, client)',
id: 'test-serve-static'
e
path: '__nuxt_test'

b

const nuxtMiddlewareOpts = {
options: server.options,
nuxt: server.nuxt,
renderRoute: expect.any(Function),
resources: Server.resources
}
expect (nuxtMiddleware) .toBeCalledTimes (1)
expect (nuxtMiddleware) . toBeCalledWith(nuxtMiddlewareOpts)
expect(server.useMiddleware) .nthCalledWith(3, {
id: 'test-nuxt-middleware',
...nuxtMiddlewareOpts
b

const errorMiddlewareOpts = {

resources: Server.resources,

options: server.options
}
expect(errorMiddleware) .toBeCalledTimes (1)
expect(errorMiddleware) . toBeCalledWith(errorMiddlewareOpts)
expect(server.useMiddleware) .nthCalledWith(4, {

id: 'test-error-middleware',

...errorMiddlewareOpts

i)

References:

1.6. Test semantic - logic

325

Test Smells Catalog, Release 2.0

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Anti-Patterns - Digital Tapestry

Categorising Test Smells

Smells in software test code: A survey of knowledge in industry and academia
TDD anti patterns - Chapter 1

TDD anti-patterns - the liar, excessive setup, the giant, slow poke

Test-Driven Development: TDD Anti-Patterns

Unit Testing Anti-Patterns, Full List

Unit testing Anti-patterns catalogue

1.6.2.15 The One

Definition:

¢ A combination of several patterns, particularly The Free Ride and The Giant, a unit test that contains only one
test method which tests the entire set of functionality an object has. A common indicator is that the test method
name is often the same as the unit test name, and contains multiple lines of setup and assertions.

Also Known As:

Eager Test

References:

Quality attributes

- Code Example
- Cause and Effect
- Frequency

- Refactoring

Anti-Patterns - Digital Tapestry
Categorising Test Smells

Test-Driven Development: TDD Anti-Patterns

326

Chapter 1. Contents

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://www.sciencedirect.com/science/article/abs/pii/S0164121217303060
https://www.codurance.com/publications/tdd-anti-patterns-chapter-1
https://marabesi.com/tdd/2021/08/28/tdd-anti-patterns.html
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/

Test Smells Catalog, Release 2.0

1.6.2.16 The Test It All

Definition:

¢ Tests that break the Single Responsibility Principle.
Also Known As:

e Eager Test

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Unit testing Anti-patterns catalogue

1.6.3 Testing many units

1.6.3.1 Feature Envy

Definition:
¢ A macro event uses another macro component’s macro events or components excessively.

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

* - Refactoring

* Bad smells and refactoring methods for GUI test script

1.6.3.2 Indirect Testing

Definition:

* The Test Method is interacting with the SUT indirectly via another object thereby making the interactions more
complex.

Code Example:

1.6. Test semantic - logic 327

https://stackoverflow.com/questions/333682/unit-testing-anti-patterns-catalogue
https://ieeexplore.ieee.org/abstract/document/6299294

Test Smells Catalog, Release 2.0

private final int LEGAL_CONN_MINS_SAME = 30;
public void testAnalyze_sameAirline_LessThanConnectionLimit ()
throws Exception {
// setup
FlightConnection illegalConn = createSameAirlineConn(LEGAL_CONN_MINS_SAME - 1);
// exercise
FlightConnectionAnalyzerImpl sut = new FlightConnectionAnalyzerImpl();
String actualHtml = sut.getFlightConnectionAsHtmlFragment(illegalConn.
—getInboundFlightNumber(),
illegalConn.getOutboundFlightNumber()) ;
// verification
StringBuffer expected = new StringBuffer();
expected.append("");
expected.append("Connection time between flight ");
expected.append(illegalConn.getInboundFlightNumber());
expected.append(" and flight ");
expected.append(illegalConn.getOutboundFlightNumber());
expected.append(" is ");
expected.append(illegalConn.getActualConnectionTime());
expected.append(" minutes.");
assertEquals("html", expected.toString(), actualHtml);

References:

Quality attributes
* - Code Example
* - Cause and Effect
* - Frequency

¢ - Refactoring

* A survey on test practitioners’ awareness of test smells

* An Empirical Study into the Relationship Between Class Features and Test Smells

* An empirical analysis of the distribution of unit test smells and their impact on software maintenance
* An exploratory study of the relationship between software test smells and fault-proneness
* Are test smells really harmful? An empirical study

* Automatic generation of smell-free unit tests

* Categorising Test Smells

* Detecting redundant unit tests for Aspect] programs

* Enhancing developers’ awareness on test suites’ quality with test smell summaries

* How are test smells treated in the wild? A tale of two empirical studies

* Obscure Test

* On the Relation of Test Smells to Software Code Quality

* On the diffusion of test smells in automatically generated test code: an empirical study

328 Chapter 1. Contents

https://arxiv.org/abs/2003.05613
https://ieeexplore.ieee.org/document/7890581
https://ieeexplore.ieee.org/document/6405253
https://ieeexplore.ieee.org/abstract/document/8847402/
https://link.springer.com/article/10.1007/s10664-014-9313-0
https://repositorio.ul.pt/handle/10451/56819
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://ieeexplore.ieee.org/abstract/document/4021983
https://lutpub.lut.fi/handle/10024/158751
https://sol.sbc.org.br/journals/index.php/jserd/article/download/1802/1807/7485
http://xunitpatterns.com/Obscure%20Test.html
https://ieeexplore.ieee.org/document/8529832
https://dl.acm.org/doi/10.1145/2897010.2897016

Test Smells Catalog, Release 2.0

* On the interplay between software testing and evolution and its effect on program comprehension
* Refactoring Test Code

* Revisiting Test Smells in Automatically Generated Tests: Limitations, Pitfalls, and Opportunities
* Scented since the beginning: On the diffuseness of test smells in automatically generated test code
 Test Smell Detection Tools: A Systematic Mapping Study

» TestQ: Exploring Structural and Maintenance Characteristics of Unit Test Suites

» The Relation of Test-Related Factors to Software Quality: A Case Study on Apache Systems

e Why do builds fail?—A conceptual replication study

1.6.3.3 Test Envy

Definition:

* A test that is really testing some other class than the one it is supposed to. A common example of this is testing
model validations in the controller when they should be tested in the model test

References:

Quality attributes
e - Code Example
* - Cause and Effect
* - Frequency

e - Refactoring

» Categorising Test Smells

* Smells of Testing (signs your tests are bad)

1.6.3.4 The Stranger

Definition:

* A test case that doesn’t even belong in the unit test it is part of. it’s really testing a separate object, most likely
an object that is used by the object under test, but the test case has gone and tested that object directly without
relying on the output from the object under test making use of that object for its own behavior. Also known as
TheDistantRelative

Also Known As:
¢ The Cuckoo

References:

Quality attributes
* - Code Example
* - Cause and Effect

* - Frequency

1.6. Test semantic - logic 329

https://link.springer.com/chapter/10.1007/978-3-540-76440-3_8
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.19.5499&rep=rep1&type=pdf
https://ieeexplore.ieee.org/document/9240691
https://www.sciencedirect.com/science/article/pii/S0164121219301487?casa_token=UT0EMFzxTcQAAAAA:L9J82_15tdySkabcIMSHKPx8rVkrltOzcwgme5cIBWgT0txJENY5y-BdUmCYUoGHnoEjZJH-cYc
https://dl.acm.org/doi/10.1145/3463274.3463335
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.649.6409&rep=rep1&type=pdf
https://search.proquest.com/openview/c52d821a4dd6ecb046957d9d6a532ae0/1?pq-origsite=gscholar&cbl=326341
https://www.sciencedirect.com/science/article/pii/S0164121221000364
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://jakescruggs.blogspot.com/2009/04/smells-of-testing-signs-your-tests-are.html

Test Smells Catalog, Release 2.0

e - Refactoring

* Anti-Patterns - Digital Tapestry
* Categorising Test Smells

 Test-Driven Development: TDD Anti-Patterns

1.7 Easy Lab

We are the Engineering and Systems Laboratory (EASY), from the Federal University of Alagoas (UFAL), Brazil.
Check us out! (Portuguese only) https://easy-group.netlify.app

1.8 How to contribute

First, you must know what you want to contribute.
1. Is it a new smell?
2. Have you found a bug?
3. Do you want to modify an already cataloged smell?

1.8.1 1. Contributing with a new smell

You may create a new smell page, following the template.rst available on this very directory, or open a new issue on
our GitHub page.

1.8.2 2. Bug reporting

If you have found a bug, edit the page on GitHub or create a new issue!

1.8.3 3. | want to modify an already cataloged smell

You need to create a new pull request with the changes or email us on easy @ic.ufal.br

Tip: You may click Edit on GitHub in the top right corner of this page to get fast access to our GitHub repo!

330 Chapter 1. Contents

https://digitaltapestry.net/testify/manual/AntiPatterns.html
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.696.5180&rep=rep1&type=pdf
https://bryanwilhite.github.io/the-funky-knowledge-base/entry/kb2076072213/
https://easy-group.netlify.app
mailto:easy@ic.ufal.br

	Contents
	Code related
	Code duplication
	Army Of Clones
	Assertion Chorus
	Copy-Paste
	Cut-And-Paste Code Reuse
	Data-Ja Vu
	Duplicate Alt Branches
	Duplicate Assert
	Duplicate Code
	Duplicate Component Definition
	Duplicate In-Line Templates
	Duplicate Local Variable/Constant/Timer
	Duplicate Statements
	Duplicate Template Fields
	Duplicate Test Code
	Duplicate Test Runs
	Duplicated Actions
	Duplicated Code In Conditional
	Duplicated Code
	Half A Helper Method
	Missing Parameterised Test
	Missing Test Data Factory
	Multiple Tests Testing The Same Or Similar Things
	Reinventing The Wheel
	Second Class Citizens
	Test Clones
	Test Code Duplication
	Test Redundancy
	The First And Last Rites
	Two For The Price Of One
	Very Similar Test Cases

	Complex - Hard to understand
	Absence Of Why
	Bad Comment Rate
	Boilerplate Hell
	Comments
	Complicated Logic In Tests
	Hard-Coded Test Data
	Hard-Coded Values
	Hard-To-Test Code
	Hard-To-Write Test
	Hardcoded Environment Configuration
	Hardcoded Environment
	Hardcoded Literals
	Hardcoded Test Data
	Herp Derp
	Hidden Complexity
	It Looks Right To Me
	Keyword Driven Testing
	Lack Comments
	Large Macro Component
	Large Module
	Large Test File
	Long Class
	Long Function
	Long Macro Event
	Long Method
	Long Statement Block
	Long Test Steps
	Long Test
	Long/Complex/Verbose/Obscure Test
	Magic Number Test
	Magic Values
	Obscure Test
	Optimizing Dry
	Over Refactoring Of Tests
	Overcommented Test
	Overly Complex Tests
	Overly Dry Tests
	Overuse Of Abstractions
	Self Important Test Data
	Tests Are Difficult To Write
	Using Complicated Data Store
	Using Complicated X-Path Or Css Selectors
	Using Test Case Inheritance To Test Source Code Polymorphism
	Verbose Test
	What Are We Testing?

	In association with production code
	Behavior Sensitivity
	Changing Implementation To Make Tests Possible
	Code Pollution
	Code Run Only By Tests
	Context Logic In Production Code
	Equality Pollution
	Fire And Forget
	For Testers Only
	Hooks Everywhere
	Indecent Exposure
	Interface Sensitivity
	Mixing Production And Test Code
	Multiple Points Of Failure
	Overly Elaborate Test Code
	Overspecification
	Overspecified Software
	Overspecified Tests
	Plate Spinning
	Production Logic In Test
	Test Dependency In Production
	Test Hook
	Test Logic In Production Code
	Test Tautology
	Tests Cluttered With Business Logic
	Tests Require Too Much Intimate Knowledge Of The Code To Run
	The Telltale Heart
	The Ugly Mirror
	Trying To Test The Untestable
	Ui Tests Should Not Expose Interactions With Web Elements
	Well, My Setup Works

	Mock and stub related
	Excessive Mocking
	Is Mockito Working Fine?
	Making A Mockery Of Design
	Mismatched Stubs
	Mock Everything
	Mock Happy
	Mock Madness
	Mock’Em All
	Mockers Without Borders
	Mocking A Mocking Framework
	Mocking What You Don’T Own
	Mockito Any() Vs. Isa()
	Overmocking
	Overuse Mocking
	Remote Control Mocking
	Subclass To Test
	Surreal
	Testing The Framework
	The Dead Tree
	The Mockery
	Unnecessary Stubs

	Violating coding best practices
	Accidental Test Framework
	Ambiguous Tests
	Anonymous Test Case
	Anonymous Test
	Bad Documentation Comment
	Bad Naming
	Badly Structured Test Suite
	Blethery Prefixes
	Comments Only Test
	Constant Actual Parameter Value
	Dead Field
	Default Test
	Directly Executing Javascript
	Disabled Test
	Empty Method Category
	Empty Test-Method Category
	Empty Test
	Erratic Test
	Erratic Tests
	Everything Is A Property
	Flaky Locator
	Flaky Test
	Fully-Parameterized Template
	Goto Statement
	Having Flaky Or Slow Tests
	Hidden Meaning
	Hidden Test Call
	Ignored Test
	Improper Test Method Location
	Inconsistent Hierarchy
	Integration Test, Masquerading As Unit Test
	Intermittent Test Failures
	Is There Anybody There?
	Lack Of Encapsulation
	Lack Of Macro Events
	Literal Pollution
	Long Parameter List
	Lost Test
	Meaningless Variable Names
	Messy Test
	Missed Skip Rotten Green Test
	Missing Variable Definition
	Missing Verdict
	Mistaken Identity
	Mixed Selectors
	Name-Clashing Import
	Non-Functional Statement
	Nondeterministic Test
	Opaque Output
	Over-Eager Helper
	Over-Specific Runs On
	Overreferencing
	Proper Organization
	Sensitive Locators
	Short Template
	Singular Component Variable/Constant/Timer Reference
	Singular Template Reference
	Stop In Function
	Test Body Is Somewhere Else
	Test-Class Name
	Test-Method Category Name
	Testing For A Specific Bug
	Testy Testy Test Test
	The Conjoined Twins
	The Enumerator
	The Flickering Test
	The Forty Foot Pole Test
	The Sleeper
	The Stepford Fields
	The Test With No Name
	Time Bomb Data
	Time Bombs
	Time Sensitive Test
	Treating Test Code As A Second Class Citizen
	Unclassified Method Category
	Unreachable Default
	Unrestricted Imports
	Unsuitable Naming
	Unused Imports
	Unused Inputs
	Unused Parameter
	Unused Shared-Fixture Variables
	Unused Variable Definition
	Unworldly Test Data
	Using Faker
	Verbless And Noun-Full
	Wasted Variable Definition

	Dependencies
	Dependencies among tests
	Chain Gang
	Constrained Test Order
	Coupled Tests
	Coupling Between Test Methods
	Dependent Test
	Identity Dodgems
	Interacting Test Suites
	Interacting Tests
	Lack Of Cohesion Of Test Cases
	Lack Of Cohesion Of Test Methods
	Litter Bugs
	Lonely Test
	Order Dependent Tests
	Test Pollution
	Test Run War
	The Environmental Vandal
	The Inhuman Centipede
	The Leaky Cauldron
	The Parasite
	The Peeping Tom
	Unusual Test Order

	External dependencies
	Context Sensitivity
	Counting On Spies
	Data Sensitivity
	External Data
	External Dependencies
	Factories Depending On Database Records
	Hidden Dependency
	Hidden Integration Test
	Local Only Testing
	Middle Man
	Mystery Guest
	Programming Paradigms Blend
	Remote Mystery Guest
	Require External Resources
	Resource Leakage
	Resource Optimism
	Stinky Synchronization Syndrome
	Stinky Synchronization
	Tests Depend On Something Outside Of The Test Suite
	The Local Hero
	The Operating System Evangelist
	Web-Browsing Test

	Design related
	Not using test patterns
	Autogeneration
	Constructor Initialization
	Contortionist Testing
	Disorder
	I’Ll Believe It When I See Some Flashing Guis
	Missing Log
	Narcissistic
	No Clear Structure Within The Test
	No Structure When Creating Test Cases
	Not Using Page-Objects
	So The Automation Tool Wrote This Crap
	Test::Class Hierarchy
	Testing Business Rules Through Ui
	The Turing Test
	Unclassified Method Category
	Undefined Test
	Unknown Test

	Issues in test steps
	Issues in assertions
	7 Layer Testing
	Asserting Pre-Condition And Invariants
	Assertion Diversion
	Assertion Mismatch Scenario
	Assertion-Free
	Assertionless Test
	Assertions Should Be Merciless
	Blinkered Assertions
	Brittle Assertion
	Brittle Test
	Brittle Ui Tests
	Broad Assertion
	Bumbling Assertions
	Calculating Expected Results On The Fly
	Celery Data
	Circumstantial Evidence
	Commented Code In The Test
	Commented Test
	Complex Assertions
	Conspiracy Of Silence
	Early Returning Test
	Equality Sledgehammer Assertion
	Fantasy Tests
	Fragile Test
	Fuzzy Assertions
	Happenstance Testing
	Inadequate Assertion
	Inappropriate Assertions
	Incidental Coverage
	Invisible Assertions
	Likely Ineffective Object-Comparison
	Line Hitter
	Martini Assertion
	Missed Fail Rotten Green Test
	Missing Assertions
	Missing Test
	No Assertions
	No Traces Left
	On The Fly
	Over Exertion Assertion
	Over-Checking
	Premature Assertions
	Primitive Assertion
	Redundant Assertion
	Returning Assertion
	Second Guess The Calculation
	Self-Test
	Sensitive Equality
	Shotgun Surgery
	Testing The Internal Monologue
	The Butterfly
	The Nitpicker
	Under-The-Carpet Assertion
	Under-The-Carpet Failing Assertion
	Using Assertions As A Substitute For All Class-Based Exceptions
	Using Assertions As A Substitute For All Defensive Programming Techniques
	Using The Wrong Assert

	Issues in exception handling
	Catching Unexpected Exceptions
	Exception Catch/Throw
	Exception Catching Throwing
	Exception Handling
	Expected Exceptions And Verification
	Expecting Exceptions Anywhere
	Issues In Exception Handling
	No Error Handling In Tests
	The Greedy Catcher
	The Secret Catcher
	The Silent Catcher

	Issues in setup
	Badly Used Fixture
	Bury The Lede
	Complicated Set Up Scenarios Within The Tests Themselves
	Curdled Test Fixtures
	Empty Shared-Fixture
	Excessive Inline Setup
	Excessive Setup
	Factories That Contain Unnecessary Data
	Fragile Fixture
	Fragile Locators
	General Fixture
	Hidden Test Data
	Idle Ptc
	Inappropriately Shared Fixture
	Irrelevant Information
	Isolated Ptc
	Large Fixture
	Max Instance Variables
	Noisy Logging
	Noisy Setup
	Obscure In-Line Setup
	Oversharing On Setup
	Refused Bequest
	Scattered Test Fixtures
	Separate Fixture Files
	Share The World
	Superfluous Setup Data
	Taking Environment State For Granted
	Test Maverick
	Test Objects Initialized In A Describe Block
	Test Objects Initialized In Each Test
	Test Setup Is Somewhere Else
	The Cuckoo
	The Mother Hen
	There Is Too Much Setup To Run The Test Cases
	Unused Definition
	Using Fixtures
	Vague Header Setup
	Verifying In Setup Method
	Where Does This One Go?

	Issues in teardown
	Activation Asymmetry
	Complex Teardown
	External Shared-State Corruption
	Generous Leftovers
	Improper Clean Up After Tests Have Been Run
	It Was Like That When I Got Here
	Leaving Temporary Files Behind
	Not Idempotent
	Shared-State Corruption
	Sloppy Worker
	Teardown Only Test
	The Painful Clean-Up
	The Soloist
	Unrepeatable Test
	Wet Floor

	Test execution - behavior
	Other test execution - behavior
	Abnormal Utf-Use
	Chatty Logging
	Frequent Debugging
	Interactive Test
	Manual Assertions
	Manual Event Injection
	Manual Fixture Setup
	Manual Intervention
	Manual Result Verification
	Print Statement
	Redundant Print
	Requires Supervision
	The Loudmouth
	Transcripting Test
	Trying To Use Ui Automation To Replace Manual Testing
	Unnecessary Navigation

	Performance
	Asynchronous Test
	Factories Pulling Too Many Dependencies
	Hardcoded Sleep
	Inefficient Waits
	Long Running Tests
	Sleeping For Arbitrary Amount Of Time
	Sleepy Test
	Slow Component Usage
	Slow Running Tests
	Slow Test
	The Bandwidth Demander
	The Slow Poke
	The Temporal Tip Toe
	Too Many Tests
	Wait And See

	Test semantic - logic
	Other test logic related
	Anal Probe
	Assert 1 = 2
	Asynchronous Code
	Branch To Assumption Anti-Pattern
	Chafing
	Complex Conditional
	Conditional Assertions
	Conditional Logic Test
	Conditional Logic
	Conditional Test Logic
	Conditional Tests
	Conditional Verification Logic
	Conditionals In Tests
	Contaminated Test Subject
	Context-Dependent Rotten Green Assertion Test
	Control Logic
	Easy Tests
	Embedding Implementation Detail In Your Features/Scenarios
	Evolve Or
	Factories With Random Data Instead Of Sequences
	Flexible Test
	Fully Rotten Green Test
	Generative
	Get Really Clever And Use Random Numbers In Your Tests
	Ground Zero
	Guarded Test
	Happy Path
	I Wrote It Like This
	Incidental Details
	Inconsistent Wording
	Indecisive
	Indented Test
	Insufficient Grouping
	Invalid Test Data
	Invasion Of Privacy
	Lazy Test
	London School Orthodoxy
	Multiple Test Conditions
	Nested Conditional
	Neverfail Test
	Only Easy Tests
	Only Happy Path Tests
	Paranoid
	Parsed Data
	Quixotic
	Rewriting Private Methods As Public
	Rotten Green Test
	Skip Rotten Green Test
	Skip-Epidemic
	Sneaky Checking
	Success Against All Odds
	Tangential
	Test By Number
	Test-Per-Method
	Testing Internal Implementation
	Testing The Authentication Framework
	Tests That Can’T Fail
	The Dodger
	The Inspector
	The Liar
	The Sequencer
	Underspecification
	Untestable Test Code
	Use Smart Values
	Wheel Of Fortune
	X-Ray Specs
	You Do Weird Things To Get At The Code Under Test

	Testing many things
	Assert The World
	Assertion Roulette
	Eager Test
	Field-Level Assertion
	Many Assertions
	Method-Based Testing
	Missing Assertion Message
	Multiple Assertions
	Piggybacking On Existing Tests
	Split Logic
	Split Personality
	Test Cases Are Concerned With More Than One Unit Of Code
	The Free Ride
	The Giant
	The One
	The Test It All

	Testing many units
	Feature Envy
	Indirect Testing
	Test Envy
	The Stranger

	Easy Lab
	How to contribute
	1. Contributing with a new smell
	2. Bug reporting
	3. I want to modify an already cataloged smell

